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It is rigorously proved for axisymmetric incompressible flows with bounded axial vorticity at infinity that if
a spiral-helical streamline has a Kolmogorov capacity~box-counting dimension! DK.1, then the velocity field
must have a singularity at the axis of symmetry. Furthermore, certain types of singularity withDK51 can be
excluded. The Burgers and the Lundgren vortices are examples of strained vortices with different types of
near-singular structure, and in both cases sections of streamlines have a well-definedDK.1. However, the
strain severely limits the region in space whereDK is larger than 1. An algorithm is developed which detects
streamlines with persistently strong curvature and calculates both theDK of the streamlinesand the lower
bound scaledmin of the range of self-similar scaling defined byDK . Error bounds onDK are also computed.
The use of this algorithm partly relies on the fact that two to three turns of a spiral are enough to determine a
spiral’sDK . We detect well-defined self-similar scaling in the geometry of streamlines around vortex tubes in
decaying isotropic direct numerical simulation turbulence with exceptionally fine small-scale resolution and
Rel around 20. The measured values ofDK vary fromDK51 to DK'1.60, and in general the self-similar
range of length scales over whichDK is well defined extends over one decade and ends at one of two
well-defined inner scales, one just above and the other just below the Kolmogorov microscaleh. We identify
two different types of accumulation of length scales withDK.1 on streamlines around the vortex tubes in the
simulated turbulence: an accumulation of the streamline towards a central axis of the vortex tube in a spiral-
helical fashion, and a helical and axial accumulation of the streamline towards a limit circle at the periphery of
the vortex tube. In the latter case, the limit circle lies in a region along the axis of the vortex tube where there
is a rapid drop in enstrophy. The existence of spiral-helical streamlines with well-definedDK.1 suggests the
possibility of a near-singular flow structure in some vortex tubes. Finally, we present some evidence based on
the spatial correlation of enstrophy with viscous force indicating that the spatial vorticity profile across vortex
tubes is not a well-resolved Gaussian at the resolution of the present simulations.@S1063-651X~96!04607-7#

PACS number~s!: 47.27.2i

I. INTRODUCTION

Hunt and Vassilicos@1# pointed out that a self-similar
energy spectrumE(k);k22p wherep is a noninteger~such
as Kolmogorov’s 2p5 5

3 ! implies the existence of near sin-
gularities in the turbulent velocity field that cannot simply be
isolated discontinuities in the velocities or their derivatives,
as in the case of plane vortex sheets.~A near singularity or
near-singular flow exhibits the asymptotic structure of a sin-
gularity outside a limited friction-dominated region where
viscosity smooths out the flow. Near singularities may tend
to singularities in the limit where the viscosityn→0. How-
ever, the limitn→0 for turbulent flows lies outside the scope
of the present paper.! These near singularities must fall in
one or more of the following three categories: simple near
singularities@Fig. 1~a!#, complex isolated near singularities
@Fig. 1~b!#, and nonisolated near singularities@Fig. 1~c!#.
However, the precise nature and origin of these near singu-
larities is not known. They could be complex isolated~accu-
mulating! near singularities if, for example, small localized
shear layers exist in the turbulence that become unstable and
lead to a spiral vortex sheet structure~see Lundgren@2,3#! or
simple power-law near singularities@the azimuthal velocity
uf of two-dimensional~2D! inviscid point vortices varies
with cylindrical radiusr according touf;r2q, q.0#. Both
of these near-singular flow patterns have a scaling symmetry,
or self-similar flow structure, around their centers~see Vas-

silicos and Hunt@4# and Hunt and Vassilicos@1#!. Noniso-
lated singular flow structure could be produced by chaotic
advection, for example, of the small scales by the unsteady
larger scale motions of the turbulence.

Neither the mixture of simple, complex isolated, and non-
isolated near singularities, nor the distribution in space of
these near singularities in the turbulence is known, either at
low or high Reynolds numbers. The near singularities im-
plied by a self-similar power spectrum~such as Kolmogor-
ov’s energy spectrum! must have self-similar scaling proper-
ties on average. However, not all imaginable near
singularities have such scaling properties. What flow struc-
tures in the small-scale turbulence carry near singularities
with self-similar scaling properties? Given that near singu-
larities necessarily exist in high Reynolds number turbulence
whereE(k);k22p andp is a noninteger, do near singulari-
ties also exist in lower Reynolds number turbulence?

Recent laboratory experiments~Cadot, Douady, and
Couder@5#, Villermeaux, Sixou, and Gagne@6#! and direct
numerical simulations~DNS! ~see Jime´nezet al. @7#, and ref-
erences therein! have led to the discovery of strong coherent
and elongated vortices among the small scales in a variety of
low-to-moderate Reynolds number turbulent flows. In par-
ticular, Jiménez et al. @7# demonstrated that the strongest
vortex tubes are a necessary product of the evolution of both
forced and decaying isotropic turbulence. However, the ori-
gin and internal structure of these vortex tubes is not yet
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understood. Two different mechanisms for their formation
are currently considered by various workers in the field. The
first is that vortex tubes originate from strained vorticity,
such as the Burgers vortex, for example. The second is that
they are the result of a shear instability leading to a spiral
roll-up of vortex sheets. In the first case, a simple velocity
near singularity of ther2q type outside a limited friction-
dominated region may exist; for example, the azimuthal ve-
locity of the Burgers vortex drops off asr21 outside the
vortex core. In the second case, the internal vortex and ve-
locity structures would have a complex isolated near singu-
larity reflected by a spiral distribution of vorticity within a
vortex tube. A model for such vortex near singularities is the
Lundgren@2,3# strained spiral vortex which is an asymptotic
solution of the Navier-Stokes equations for long times.

Attempts to answer questions concerning the existence
and nature of near singularities in turbulent flows may be
made by recourse to data and with appropriate diagnostic
tools. Kevlahan and Vassilicos@8# developed tools based on
fractal and wavelet methods which they applied to one-
dimensional experimental high Reynolds number turbulence
data in an attempt to determine whether and to what extent
high Reynolds number turbulence near singularities are iso-
lated ~e.g., spiral! or nonisolated~e.g., fractal!. With DNS,

we now have access to three-dimensional numerical low-to-
moderate Reynolds number turbulence data from which the
3D flow structures where near singularities may be residing
can be visualized and quantitatively analyzed. For such data
it may be possible to investigate whether near singularities
exist in low Reynolds number turbulence, and specifically
whether near singularities are manifest by the vortex tubes of
the small-scale turbulence. In this study we analyze a suc-
cession of identical turbulence velocity fields with increasing
small-scale resolution. In particular, we analyze an excep-
tionally high-resolution~5123! turbulence simulation at Rel

~the Taylor microscale Reynolds number! of order 20 with
resolved scales below the Kolmogorov scaleh. By compar-
ing different resolution simulations of the same turbulence
we can confirm results concerning local near-singular flow
structure obtained with lower-resolution simulations.

Even with a succession of high-resolution 3D turbulent
velocity fields, conventional methods are not sharp enough to
adequately detect and analyze flow near singularities, and
new tools are needed. In typical well-resolved direct numeri-
cal simulations, the grid size is approximately 2h, and vortex
tubes typically cover only five to ten grid points across their
width. It is therefore neither practical nor fruitful to proceed
by trial and error and fit different functional forms to the

FIG. 1. In 1D, ~a! the functionu(x)5x21/6 has an energy spectrumE(k);k25/3; ~b! the functionu(x)5sin(x21/2) has an energy
spectrumE(k);k25/3; ~c! the Weierstrass functionu(x)5( n50

` kn
D22sin(knx) wherekn5yn with y.1 andD5

7
6 has an energy spectrum

E(k);k25/3.
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velocities and vorticities at these few points or to directly
plot these local velocity and vorticity distributions for mul-
titudes of vortices throughout the computational domain in
an attempt to directly ascertain internal vortex structure. In
fact, such direct tests have already been attempted, with in-
conclusive results. Vincent and Meneguzzi@9#, for example,
show a ‘‘cut through a typical vorticity tube along a direction
perpendicular to its axis’’ that suggests a spiral vorticity
structure, while Jime´nezet al. @7# plot the ‘‘radial vorticity
distribution for different cross sections along a typical
worm,’’ ‘‘showing that the Gaussian model is at least rea-
sonable. This model is consistent with that of an axially
stretched equilibrium Burgers vortex.’’ Because unambigu-
ous conclusions cannot be drawn from this direct approach,
new fluid mechanical measures are needed which are directly
sensitive to the asymptotic similarity and near-singularity
properties of localized turbulent flow structures, and which
can extract such local information from the flow even in
simulations with more typical resolutions.

Because of the common occurrence of local axial motions
within vortex tubes, caused by straining, for example, typical
streamlines inside and around vortex tubes in turbulent flows
can be expected to be curves that are spiral in nature. Most
smooth or regular curves, and even most regular spiral
curves, have trivial integral Kolmogorov capacities~box-
counting fractal dimensions!. However, there exists a re-
stricted class of regular spirals that have a nonintegral ‘‘frac-
tal’’ dimension or Kolmogorov capacityDK ~see Vassilicos
and Hunt@4#!. In Sec. II of this paper we prove that axisym-
metric incompressible flows with bounded axial vorticity that
have spiral-helical streamlines with Kolmogorov capacities
strictly larger than 1musthave a singularity in the Eulerian
velocity field. Hence the Kolmogorov capacity of a spiral-
helical streamline surrounding the viscous core of a vortex
tube indicates the near-singular structure of the vortex tube
itself. For example, self-similar scaling properties of stream-
lines around a Burgers or a Lundgren vortex reflect their
vorticity and strain-rate structure, and the actual nonintegral
value of the Kolmogorov capacityDK of their streamlines is
determined by the scaling properties of the near singularity,
the details of the straining field, and the Reynolds number.

In this paper we directly identify and systematically ana-
lyze vortex tubes using the Kolmogorov capacity of the ge-
ometry of individual streamlines associated to vortex tubes
as a measure oflocal self-similar scaling and near-singular
flow structure. This measure is robust at low Reynolds num-
bers. We study the self-similarity properties of streamlines
around small-scale vortex tubes in isotropic decaying turbu-
lence where the Taylor microscale Reynolds number is
Rel'20, too low for a self-similar energy spectrum to exist.

It should be stressed from the onset that we are searching
for what may be rare but perhaps significant events. The
suggestion of this paper’s fractal analysis of streamlines is
that near-singular self-similar flow structure exists around a
significant number of local high vorticity regions in low Re
decaying turbulence. It is well known, however, that high
vorticity regions with vortex tube topology fill only a small
percentage of the total domain of the turbulence.

In Sec. III we discuss the DNS data used, the interpolation
schemes, and our method ofsystematic local‘‘fractal’’
analysis, and in Sec. IV we discuss the application of the

procedure to isotropic decaying turbulence and the results.
We conclude in Sec. V.

II. THE RELATION
BETWEEN THE SELF-SIMILAR SPIRAL

GEOMETRY OF STREAMLINES
AND THE EULERIAN VELOCITY, VORTICITY,

AND STRAIN-RATE FIELDS

From a fluid mechanics point of view, spiral streamlines
occur naturally in turbulence around tubelike concentrations
of vorticity when pressure forces cause fluid motion along
the tube axis. These pressure forces may be associated, for
example, with local straining of the vortex tube or local di-
vergence of the vortex lines. The topology of the locally
spiraling streamlines is therefore a reflection of the structure
of the local vorticity and strain-rate fields.

From a dynamical systems point of view, spirals occur in
the vicinity of particular invariant manifolds such as hyper-
bolic points. Stability analysis can reveal the spiral structure
near the manifold, but such analysis being linear, the spiral’s
geometry is only known very close to the hyperbolic point
where the spiral is logarithmic. Logarithmic spirals, how-
ever, have a Kolmogorov capacityDK51 ~see Vassilicos
and Hunt@4# for the Kolmogorov capacity of spirals!. The
existence of streamlines withDK larger than 1 is therefore a
nontrivial proposition which involves regions of space where
the nonlinearities of the system cannot be neglected. We in-
vestigate here the relation between the Kolmogorov capaci-
ties of streamlines and the combination and nature of strain-
rate and differential rotation that can cause these capacities
to be nontrivial in incompressible flows.

A. Singularities and streamline capacities
in axisymmetric incompressible flows

In this section we prove the following statement:in an
axisymmetric incompressible flow with bounded axial vortic-
ity at infinity, if a helical streamline spirals in towards the
axis of symmetry with a Kolmogorov capacity strictly larger
than 1, then the Eulerian velocity field must have a singular-
ity at a finite location on the axis.

We derive this result analytically by proving itsconverse,
which is in an axisymmetric incompressible flow with helical
streamlines that spiral in towards the axis of symmetry, if the
Eulerian velocity field is regular (no singularities) near the
axis of symmetry and the axial component of the vorticity is
bounded near the axis at infinity, then the Kolmogorov ca-
pacity of these streamlines must be DK51.

In detail, the assumptions of this converse statement fol-
low.

~1! Axisymmetry and incompressibility, which imply the
existence of a Stokes stream functionc(r ,z) that is indepen-
dent of the azimuthal cylindrical anglef and only depends
on the cylindrical coordinatesr ~distance from the axis of
symmetry! andz ~distance along the axis of symmetry!. The
radial and axial cylindrical velocity components are, respec-
tively,

ur52
1

r

]

]z
c, ~2.1a!
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uz5
1

r

]

]r
c. ~2.1b!

~2! Regularity of the velocity field as r→0 for all values
of z, and at any small value of r as z is varied. This means
that asr→0,

c~r ,z!'r lF~z!, ~2.2!

and the azimuthal velocity component

uf~r ,z!'rmG~z!, ~2.3!

whereF andG are regular functions ofz at all noninfinite
values ofz, andm>1 for regularity and incompressibility;
the regularity ofur anduz requires thatl>2. However, the
minimum requirement on m and l for the present proof to be
valid is not regularity of the velocity field, but the weaker
requirement that m and l be real numbers such that~m11!/
l.0 and l.0. We state our assumptions in terms of regular-
ity for the sake of simplicity of exposition, but the actual
assumptions are even weaker than that. This is made clear in
what follows.

From ~2.1!–~2.3!, thez andr components of a streamline
are related bydr/dz5ur /uz'2rF 8(z)/ lF (z) as r→0
[F8(z)5(dF/dz)(z)], which, providedF(z) does not van-
ish, implies that

~r /r 0!
l@F~z!/F0#'1 ~2.4!

asr→0 ~r 0 andF0 are constants that depend on the particu-
lar streamline!.

~3! Existence of helical streamlines that spiral in towards
the axis of symmetry of the flow and remain helical arbi-
trarily close to this axis. As explained in the next paragraph,
this assumption implies thatF(z)Þ0 for all z greater than,
say, z50, and hence guarantees the validity of~2.4! for
z.0. Let us first point out that as the limitr→0 is taken on
particular helical streamlines that spiral into the axis of sym-
metry, ~2.4! implies thatF(z) must tend monotonically to-
wards infinity ~becausel.0!. This monotonic increase in
F(z) is not possible unlessz→` sinceF(z) is a regular
function ofz at all noninfinite values ofz. HenceF(z) must
be a monotonically increasing function ofz.

If F does vanish at, say,z50, its regularity implies that
F(z)'Czb asz→0, whereC is a constant and the exponent
b is a strictly positive integer (b>1). Near z50 and as
r→0, ur'2bCrl21zb21 and uz' lCr l22zb. Considering
the four possibilities based on whetherC is positive or nega-
tive andb even or odd, streamlines either move away from
z50 and towards the axis of symmetry or towardsz50 and
away from the axis of symmetry. In the planez50, stream-
lines may spiral in towards the axis without leaving the plane
z50 and therefore without being helical. Since we assume
that a streamline exists which spirals in towards and is heli-
cal arbitrarily close to the central axis,F(z) must remain
different from 0 along that streamline when the streamline is
sufficiently close to the axis;~2.4! is valid over that region
where the streamline is spiraling close to the axis.

Another consequence of the streamline’s spiraling to-
wards the axis is that the azimuthal angle’s~f! variation
along the streamline is such thatf increases with increasing

z and decreasingr . The derivativedf/dr taken along the
streamline is therefore strictly negative; becauseF8(z).0
for z.0 and because the streamline’s projection on the azi-
muthal plane obeys

df

dr
5

uf

rur
'2rm2 l

G~z!

F8~z!
~2.5!

as r→0, G(z) must be strictly positive forz.0.
~4! Boundedness of the axial component of the vorticity

near the axis at infinity. The axial component of the vorticity
vz'(m11)rm21G(z) asr→0, and its boundedness implies
thatG(z) is bounded asz→`.

We now show that the Kolmogorov capacity of the spiral
streamline isDK51. In Fig. 2~a! we plot the streamline’s
projection on an axial plane. From thenth to the (n11)th
turn of the streamline@i.e., the streamline’sf varies from
n2p to (n11)2p# the streamline’sz coordinate changes by
an amountDzn5zn112zn . The distance between two suc-
cessive turns of the spiral streamline in 3D space isDn

5A(Dr n)21(Dzn)
2, where Dr n is the distance between

consecutive turns of the streamline’s projection on the azi-
muthal plane@see Fig. 2~b!#. The Kolmogorov capacityDK
of the streamline beyondz50 is equal to 1 if there isno
accumulation of length scales~Vassilicos and Hunt@4#!. An
accumulation of length scales means thatDn should tend to 0

FIG. 2. Schematic drawings of~a! the projection of a spiral-
helical streamline on an axial plane, and~b! the projection of the
same streamline on the azimuthal plane.
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asn→`. The streamline’s spiraling towards the axis implies
thatDr n→0 asn→`. However, the boundedness ofG(z) as
z→` combined with the fact thatF(z)→` asz→` implies
that Dzn→` as n→`. Indeed, from~2.4! and ~2.5! it fol-
lows that

2p5E
n2p

~n11!2p

df'2E
r n

r n11
dr rm2 l

G„z~r !…

F8„z~r !…

'
~F0r 0

l !b21

l E
zn

zn11
dz

G~z!

Fb~z!
~2.6!

as r→0, whereb5(m11)/l.0. BecauseG(z)/Fb(z) is a
decreasing positive function ofz, ~2.6! can only be satisfied
if Dzn→` asn→`. HenceDn→` asn→`, no accumula-
tion of scales exists, and thereforeDK51. @Strictly speaking,
this conclusion only requires thatG(z) does not increase
with z at a rate faster thanFb(z).#

Intuitively, the above argument may be stated as follows:
because the flow field is regular and incompressible, it takes
the form ~2.2!, ~2.3!, and the helical-spiral streamline must
spiral in towards the axis but also towards ever increasing
values ofz; and because the axial component of vorticity is
bounded at large values ofz, the axial motion is much faster
than the azimuthal motion, which implies thatDzn must also
increase indefinitely asn→`. Hence there is no accumula-
tion of length scales, even though the streamline is spiral and
converges towards the axis, and thereforeDK51.

Note that this proof does not require thatm be larger than
or equal to 1; it is only required thatb5(m11)/l and l be
strictly positive. Hence there existsingular Eulerian flow
fields where spiral streamlines donot have aDK larger than
1; for example,~2.2! and~2.3! with negative real values ofm
such thatm.21 andl.0.

We now consider an example of an axisymmetric and
incompressible near-singular Eulerian flow field whichdoes
give rise to streamlines withDK.1 in certain regions local
to the vortex if the Reynolds number is large enough, and
where the effect of strain is to reduce the Kolmogorov ca-
pacity fromDK.1 towards 1 in other regions local to the
vortex. In the Appendix we discuss an example of a nearly
axisymmetric incompressible flow field with a ‘‘complex’’
~spiral! vorticity singularity.

B. The Burgers vortex:
An axisymmetric ‘‘simple’’ velocity near singularity

„l52,m521…, and the effects of strain
and Reynolds number onDK

The Burgers vortex~Burgers @10#! is often used as a
model for small-scale turbulence and is an exact steady so-
lution of the Navier-Stokes equations where the continuous
action of strain and viscous diffusion balance to give a vor-
tex core of steady, finite size. It has a self-similar energy
spectrum E(k);k21 for k small @specifically E(k)
}g2k21e2(Rk)2 in terms of quantities defined below# which
reflects the near-singular behavior of the velocity field out-
side the vortex core.

In cylindrical coordinates (r ,f,z), the velocity is along
the z direction with magnitude

v~r !5
a Reg
4p

e2ar2/4n, ~2.7!

wheren is the kinematic viscosity, Reg5g/n, and g is the
circulation of the vortex, specificallyg52p* 0

`v(r )r dr .
This flow is sustained by an external straining velocity field
derived from the Stokes stream functionc5(a/2)r 2z in
which a is the strain rate:

uz5az, ~2.8a!

ur52
ar

2
. ~2.8b!

Vorticity arises from the azimuthal velocity component

uf~r !5
g

2pr
~12e2r2/2R2!, ~2.8c!

whereR5A2n/a is the radius of the vortex core. Note that
l52 @comparec5(a/2)r 2z with ~2.2!#, and thatuf is sin-
gular outside the core where 2puf'g/r , som521 @see
~2.3!#. The Burgers vortex is an example of an axisymmetric
near-singular vortex where streamlines exist withDK.1;
m521 is marginally outside the domain of validity of the
result in Sec. II A thatDK51 whenb5(m11)/l.0 and
l.0.

The streamlines of the Burgers vortex are helical around
the z axis and spiral in the (r ,f) plane with a projection in
that plane given by

df

dr
52

g

par3
~12e2r2/2R2!. ~2.9!

A streamline starting at a distancer 0 that is larger than the
vortex core radiusR revolves around the corenc times be-
fore reaching the core atr5R, and

nc<
Reg
8p2 F12S Rr 0D

2G . ~2.10!

Clearly, Reg needs to be fairly large if there is to be a sig-
nificant number of revolutions before the streamline enters
the core. When this is the case, the streamline’s projection on
the (r ,f) plane takes the spiral formr (f);f21/2 outside
the core, and its Kolmogorov capacity is given byDKproj
511 2

3 @from a direct application of the formula
DK5111/(11b) for spirals r (f);f2b, b.0, which is
valid when the number of turns of the spiral is not more than
roughly four to five turns#; however, if the spiral has more
than four to five turns, in which caseDK5max„1,2/(11b)…
~see Vassilicos and Hunt@4#!, thenDKproj5

4
3. For moderate

values of Reg wherenc,1, the streamlines rapidly shoot into
the vortex core, nearly as straight lines. Inside the vortex
core, the streamlines are logarithmic spirals given by

r ~f!;e2~4p/Reg!f, ~2.11!

and the Kolmogorov capacity of the streamline’s projection
on the (r ,f) plane isDKproj51.
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Note that aDKproj larger than 1 detects that regionoutside
the vortex core whereuf is singular. Conversely,DKproj
51 inside the vortex core whereuf;r .

The Kolmogorov capacities of a streamline in 3D space
and of its projection in the (r ,f) plane are not the same, in
general. For a steady Burgers vortex, streamlines and fluid
particle paths coincide, and a streamline’s coordinatesr and
z depend on the parameter timet as z(t)5z0e

at and
r (t)5r 0e

2(a/2)t, wherez0 , r 0 are the coordinates att50.
For large enough values ofz0 , the Kolmogorov capacity of
the streamline isDK51 because the velocities in the axial
direction are much higher than the velocities in the radial
direction. Indeed, when the displacement inz after one turn
of the spiral streamline is larger than the displacement inr ,
i.e., whenDzn.Dr n ~see Fig. 2!, thenDK51 because the
covering with boxes of the 3D streamline is a serial
covering—a covering where each box~provided its size is
not too large! covers only a portion ofonecoil of the helical
spiral and no more~see Vassilicos and Hunt@4# and the
box-counting algorithm in Sec. III!.

In fact, sincem521(b50), Dn5A(Dr n)21(Dzn)
2 de-

creases initially and then increases with increasingn, leading
to an accumulation of length scales in a restricted region of
space wherez0 is sufficiently small. There, the streamlines
have a Kolmogorov capacityDK5DKproj . If r 0 is far inside
the vortex core (r 0!R), DK51, whereas ifr 0 is far outside
the vortex core (r 0@R), thenDK.1 provided that the box
counting is limited to the region where the displacement inz
after one turn of the spiral is smaller than the displacement in
r ~i.e.,Dzn!Dr n!. In this region

z0,
r 0

8p2r 0
2/RegR

2111A8p2r 0
2/RegR

211
, ~2.12!

and the 3D spiral streamline may be covered by the same
number of boxes as its projection; henceDK5DKproj . Note
that inequality~2.12! implies that the probability of finding a
section of streamline withDK5DKproj outside the vortex
core decreases with decreasing Reg . We stress the conclu-
sion that the persistent straining action severely limits the
region around the vortex whereDK.1.

For the Burgers vortex to display spiral streamlines with
DKproj.1, and thereforeDK.1 in a restricted region of
space, Reg should be larger than at least 200 so that stream-
lines have at least two turns outside the vortex core—from
~2.10!; two turns is the minimal requirement forDK to be
measurable~Vassilicos and Hunt@4#!. For such values of Reg
to exist in DNS’s requires a much larger Reynolds number
than what we analyze in this paper. Jime´nezet al. @7# calcu-
lated typical values of Reg by fitting a Gaussian distribution
of vorticity to the vortex tubes in isotropic simulations of
turbulence~as is the case of Burgers vortex tubes!. They
found that Reg grows with Rel , and for a forced turbulence
of Rel535.8, they found an average value of Reg equal to
97, with a standard deviation of about 40~determined from
an inspection of Fig. 10 in Jime´nezet al. @7#. The maximum
values of Reg that Jiménez et al. @7# observe in their low
Reynolds number forced turbulence lie between 150 and
200. We conclude, therefore, that if the vortices in their
simulations were Burgers vortices, the probability of detect-
ing streamlines withDK.1 would be very small.

This conclusion is even stronger for the simulations ana-
lyzed here where Rel'20. Based on the vortex Reynolds
numbers measured by Jime´nezet al. @7#, Reg should be well
below 200 for almost all vortex tubes in the simulations ana-
lyzed here. If the turbulence vortex tubes in our simulations
are Burgers vortices, it should be very unlikely to find
streamlines with more than two turns andDK.1 in 3D
space—see~2.10!. As shown in Sec. IV, however, we find a
significant number of high-intensity vortex tubes in our
simulations that have spiral streamlines withDK.1, sug-
gesting that these high-intensity vortex tubes in the isotropic
turbulence are not Burgers vortices. Furthermore, because
the probability of finding streamlines in our simulations with
nontrivial Kolmogorov capacities is not small, it appears that
many vortex tubes are not subjected to persistent straining,
which would severely limit the spatial regions withDK.1.

The object of the following Secs. III and IV is to demon-
strate that spiral-helical streamlines with well-defined nonin-
tegral Kolmogorov capacities do exist around small-scale
vortex tubes in DNS low Reynolds number isotropic and
decaying turbulence. In fact, the analysis reported in Secs. III
and IV leads to the detection of two different types of
streamlines with well-defined nonintegral Komogorov ca-
pacitiesDK ; helical-spiral streamlines accumulating towards
a central axis and streamlines with a helical and axial accu-
mulation towards a limit circle.

III. THE FOUR DATA SETS,
INTERPOLATION TECHNIQUES,

AND THE METHOD
OF SYSTEMATIC FRACTAL ANALYSIS

A. The four data sets

We use the numerically generated data set of isotropic
unforced decaying turbulence which Yeung and Brasseur
@11# obtained by DNS on a 1283 grid with Rel519, and three
other data sets at nearly the same decaying state on 1283,
2563, and 5123 grids, respectively, with Rel521. Yeung and
Brasseur@11# allowed an initial Gaussian velocity field with
a k2 small wave-number and ak25/3 large wave-number
energy-spectrum to evolve by the unforced Navier-Stokes
equations until it reached a non-Gaussian equilibrium state
of power-law decay. The first velocity field analyzed in this
paper is the one that Yeung and Brasseur@11# used as the
initial condition in their subsequent forcing calculations. The
second 1283 velocity field analyzed in this paper was ob-
tained from the same initial realization of a Gaussian veloc-
ity field with the same initial energy spectrum and the same
parameter setting. We refer to the first velocity field by F128
and to the second by S128. These two velocity fields are
obtained at slightly different evolution times, resulting in a
small difference in Reynolds number. In both data sets the
turbulence has evolved several eddy turnover times to a state
of power-law decay and the Kolmogorov-scaled high wave-
number energy spectrum has collapsed to a single curve. The
initial artificial Kolmogorov25

3 spectrum progressively dis-
appears during these simulations.

For the F128 and S128 data sets, the grid spacingDx
'1.8h @whereh5~n3/e!1/4 ande is the mean dissipation rate
at those times, andDxkmax'p wherekmax is the simulation’s
largest excited wave number# and the longitudinal Taylor
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microscalel'5Dx. The longitudinal integral length scale
Lp'11Dx in the F128 data set with Rel519, and
Lp'12.4Dx in the S128 data set with Rel521. More infor-
mation about these data sets can be found in Yeung and
Brasseur@11#.

As indicated in Table I, the two remaining data sets, S256
and S512, are identical in parameter setting, initial condi-
tions, Reynolds number, and evolution time to S128 but are
better resolved because they have been obtained from the
unforced evolution of the Navier-Stokes equations on 2563

and 5123 grids, respectively. Whereaskmaxh51.61 in S128,
kmaxh53.20 in S256 andkmaxh56.38 in S512. In S256Dx
'0.92h, l'9.8Dx, and Lp'25Dx, and in S512,Dx
'0.46h, l'19.4Dx, and Lp'49.5Dx. The analyses were
carried out in 1283 subdomains of the S256 and S512 data
sets, corresponding to18 and

1
64 of the computational domains,

respectively.

B. Interpolation of velocities between nodes
and the calculation of streamlines

To calculate instantaneous streamlines, we solve

dx

dt
5u„x~ t !… ~3.1!

numerically, whereu~x! is the frozen Eulerian velocity field
at a pointx. For any given initial positionx0, the trajectory
x~t,x0! of a fluid element in this frozen velocity field is a
streamline and a solution of~3.1!.

We used a standard fourth-order Runge-Kutta routine to
solve~3.1! with a fictitious time stepdt5TE/200, whereTE
is the Eulerian integral time scale, and the Courant number
dtumax/Dx50.2, which is significantly less than 1~umax is
the maximum value of the three velocity components within
the data set!. We tried smaller values ofdt in the first set of
streamline sections that were extracted for ‘‘fractal’’ analysis
~see Sec. III C! and no appreciable difference was found for
a given velocity interpolation scheme.

We used two velocity interpolation schemes, a linear
second-order accurate~in grid spacing! eight-point scheme,
and the third-order Taylor series 13-point scheme~TS13! of
Yeung and Pope@12#. These were tested against exact spec-
tral interpolation obtained by summing the full Fourier series
at points in continuous space between grid nodes.~DNS data
are generated on a periodic domain and are represented by a
finite Fourier series.! The cost of using the full spectral in-
terpolation for the simulation of a large number of stream-
lines is unacceptably large; hence the use of numerically
cheaper interpolation schemes, the accuracy of which we test
against the exact interpolation~see Sec. IV!. We used the

linear and TS13 interpolation schemes tolocateaccumulat-
ing streamlines, while TS13 and the full Fourier summation
were used to accurately track streamlines in these regions.
These accurate streamlines were then subjected to fractal
analysis.

Yeung and Pope@12# compared the accuracies of ten
interpolation schemes, including the linear and TS13
schemes, on a 323 velocity field grid data expressed as a
finite Fourier series with no time dependence~frozen field!,
random phases, and an energy spectrum
E(k)5k25/3exp[23.675(kh)4/3]. They computed errors in
fluid particle displacement, and found that TS13 is very ac-
curate, performing better than all other schemes except
splines and full spectral interpolation. Specifically, for TS13
in the case where the largest wave numberkmax is such that
kmaxh51, they report an average particle displacement error
over many particles that remains smaller than 1% for nearly
two integral time scales. For TS13 in the case where
kmaxh54, they report an average particle displacement error
that remains below 0.01% over more than one integral time
scale, for a variety of Courant numbers below 0.3. Further-
more, they do not observe an increase in accuracy as the
Courant number decreases, but they do observe a fairly dra-
matic increase in accuracy askmaxh increases.

Yeung and Pope@12# find that a suitable criterion for
good TS13 particle tracking accuracy iskmaxh>1. As indi-
cated in Table I, in F128 and S128kmaxh'1.6, whereas
kmaxh is approximately 3.2 in S256 and 6.38 in S512. Bal-
achandar and Maxey@13# demonstrate on specific examples
including TS13 that the error with which an interpolation
scheme determines the Fourier coefficients of a velocity field
increases with wave number. Therefore interpolation errors
are smaller for velocity fields with steeper energy spectra.
Here the energy spectra decrease at a rate much faster than
k25/3.

As an additional test, we computed streamlines around
simulated Burgers vortices with characteristics similar to the
vortices found in the unforced DNS turbulence of Yeung and
Brasseur@11#, and found no significant error.

C. Systematic ‘‘fractal’’ analysis
of turbulent streamlines

~i! Because we search for streamlines with spiral or ac-
cumulating structure, we require an algorithm which can first
detect streamline sections with persistently strong curvature
~what we call ‘‘persistence of strong curvature’’!. The
streamline sections that we seek to discard are ‘‘meander-
ing’’ or nearly straight; their curvature changes orientation
‘‘too often’’ along the streamline’s arc length, or is simply
too gentle.

This qualitative requirement for persistent curvature is
quantified as follows: we first calculate the scalar product of
the normaln to a streamline at two consecutive values oft in
the numerical solution of~3.1!, i.e., n(t)•n(t1dt) for all t,
and plot this product against the arc lengths ~as shown in
Fig. 3 by the dotted line!. If the streamlines were in a 2D
plane,n(t)•n(t1dt) would change value abruptly from 1 to
21 and back to 1 again at those pointss on the streamline
where the curvature changes sign~inflection points!. In 3D
space, more complex changes in curvature can occur and we
define a somewhat arbitrary threshold to identify spikes in

TABLE I. Characteristics of the 4 DNS data sets.

F128 S128 S256 S512

Dx/h' 1.8 1.8 0.92 0.46
kmaxh' 1.63 1.61 3.20 6.38
Rel' 19 21 21 21
l/Dx' 5 5 9.8 19.4
Lp/Dx' 11 12.4 25 49.5
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n(t)•n(t1dt). Where the value ofn(t)•n(t1dt) is below
that threshold the algorithm automatically decides that there
is no ‘‘curvature persistence’’ on the respective segment of
streamline. Abrupt jumps inn(t)•n(t1dt) can be seen in
Fig. 3.

The identification of jumps inn(t)•n(t1dt) is not suffi-
cient for a criterion for ‘‘persistence ofstrong curvature.’’
We also need a criterion for consistently strong curvature. To
quantify strong curvature, the algorithm first identifies a
range of arc lengthss wheren(t)•n(t1dt) is consistently
larger than a certain value@e.g., in Fig. 3,n(t)•n(t1dt) is
larger than 0.7 froms527 to 67#, and then calculates the
integral*C(s)ds of the streamline curvatureC(s) over that
range of arc lengthss. If *C(s)ds is larger than a certain
value, then, on average, the curvature remains large over the
relevant range of arc lengths, and the algorithm isolates that
portion of streamline as having a persistence of strong cur-
vature@e.g., in Fig. 3*C(s)ds is larger than 2p from s527
to 67, whereC(s) is given by the solid line#. The box-
counting algorithm to determine the Kolmogorov capacity is
then applied to the streamline segments identified by the al-
gorithm as having persistently strong curvature.

After some experimentation, we chose different threshold
values for the linear and TS13 interpolation schemes. For
linear interpolation, the thresholds weren(t)•n(t1dt)>0.95
and*C(s)ds>3p. TS13 interpolation with the same thresh-
old of 0.95 missed many persistently strongly curved stream-
lines, either completely or only partially. Consequently, for
TS13 we chosen(t)•n(t1dt)>0.7 and*C(s)ds>3p. Note
that in certain circumstances,*C(s)dsmay be interpreted as
a total angle.

This algorithm is still imperfect and may miss some spiral
streamlines, but as we report in Sec. IV, the majority of the
streamline sections that it did isolate had a well-defined spi-
ral or accumulating character.

~ii ! The box-counting algorithm is a central tool of fractal
analysis. The approach is to cover a streamline with boxes of
size d and to count the numberN(d) of boxes that are
needed for the covering~see Mandelbrot@14#!. In practice, at
least three different ranges of length scales must exist in the

practical application of box counting, as illustrated in Fig. 4.
Range 1: Because numerically computed streamlines are

in fact a sequence of points, ifd is so small that the points of
the streamline are resolved, thenN(d) is a constant equal to
the number of points that make up the streamline.

Range 2: Asd increases, a range of length scalesd is
reached where the box covering does not resolve the indi-
vidual points, but sees a smooth one-dimensional object. In
that range,N(d);d21.

Range 3: Finally, whend is large enough to compare with
the extent of the streamline itself, thenN(d) is again con-
stant and of order 1.

If the streamline has a nonintegral Kolmogorov capacity
DK , then afourth ~‘‘fractal’’ ! range of length scalesd exists
between ranges 2 and 3 in Fig. 4, whereN(d);d2DK with
DK.1. We seek an algorithm that can detect this fractal
range, if it exists, determine its extent, and then measureDK
with suitable confidence. We now describe such an algo-
rithm.

In general,

DK~d!52
ln@N~d!/Nmin#

ln~d/dmin!
, ~3.2!

whereNmin[N~dmin! anddmin is the lower bound of the frac-
tal range. If a fractal range exists with a well-defined value of
DK , thenDK(d) is constant~independent ofd! in that fractal
range, andDK(d)5DK .

FIG. 3. CurvatureC(s) ~solid line! and scalar productn(t)•n(t
1dt) ~dotted line! against arc lengths for one streamline, where
n(t) is the unit normal vector to the streamline at pseudotimet.

FIG. 4. ~a! The box-counting ranges 1–4 shown on a log-log
plot of N(d) against box sized. ~b! The box-counting ranges 1–4
shown on a log-log plot ofdN(d) against box sized. The maximum
value ofdN(d) beforeD on this plot corresponds tod0. D is chosen
between ranges 2 and 3.
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We first choose a scaleD which, on phenomenological
grounds, should be larger thandmin , but not in range 3. To
identify range 4 and specifically finddmin , the algorithm first
looks for the maximum ofdN(d) in the range of length
scales bounded byD from above@see Fig. 4~b!#. Let us call
d0 the value ofd where this maximum occurs. The role of the
upper boundD is to ensure thatd0 is within range 2 where
N(d);d21, and not within range 4. Thusd0<dmin .

Then, for successive values of ad8 betweend0 and D
~D.d0!, the algorithm calculates the average valueD̄K(d8)
and the variances2~d8! of

DK~d,d8!52
ln@N~d!/N~d8!#

ln~d/d8!
, ~3.3!

over a range of length scalesd that is bounded byd8 from
below, and by the Taylor microscalel from above. The Tay-
lor microscale may be roughly interpreted as being an aver-
age radius of the turbulent streamlines~sincel2}^u2&/^v2&!.
Whereas in this work the upper bound to range 4 is fixed at
l, in forthcoming work we shall vary the upper bound. Re-
sults presented in Sec. IV concerning extremely fine features
at the very smaller scales of high vorticity regions indicate
that this modification may be necessary. However, it is not
necessary for the study of most spiral streamlines in the flow,
as shown by the results in Sec. IV.

If a fractal range exists withDK.1,s2~d8! decreases with
increasingd8.d0 until d8 reaches the upper bound of range 2
whered85dmin ~see Fig. 4!. Then, asd8 grows beyonddmin ,
s2~d8! increases because a decreasing sample of values of
DK(d,d8) is used to calculates2~d8!, and the function
DK(d,d8) becomes noisier asd approaches range 4.The
lower bounddmin of the fractal range is the value ofd8 where
s2(d8) is minimized. The measured value of DK is D̄K(dmin).

To illustrate the application of this algorithm, consider the
example of the plane spiralr (f);f21/2 @Fig. 5~a!# which
was generated on the computer;r is the distance to the center
of the spiral and the anglef is given by 2pnt wherent is a
real number between 0 and infinity representing a number of
turns. The Kolmogorov capacity of this spiral isDK5 4

3 ~see
Vassilicos and Hunt@4#!. Figure 5~b! shows the outcome of
the box-counting algorithm on that spiral where the upper
bound scale is set equal to 1, the size of the grid spacing in
Fig. 5~a!. The algorithm identifieddmin50.127 to be the
minimum scale of the fractal scaling range 4 where it mea-
suredDK51.3 with accuracys250.007. The slight underes-
timation ofDK is caused by the left-hand side of theDK(d)
curve in Fig. 5~b!, and can be corrected. We tested our algo-
rithm on a variety of examples of spirals, and found that it
works well, although always slightly underestimating the
value ofDK .

We remedy this underestimation by generating the mirror
image of the curveDK(d) with respect to a horizontal mirror
line in the graph (DK ,d), and then summing the original and
mirror curves together. By varying the vertical coordinate of
the mirror line, we find the location of that mirror line that
minimizes the standard deviation of thesum of the two
curves. That vertical coordinate is the value ofDK that we
seek, and in the case of Fig. 5~a!, for example, this improved
box-counting algorithm yields aDK51.33.

IV. DESCRIPTION OF THE PROCEDURE
AND RESULTS

A. Analysis of 1283 data

Most studies of small-scale turbulence structure focus on
subjective and visual descriptions of flow structure without
quantified measures of flow topology and geometry and no
statistics of such measures either. The Kolmogorov capacity
is such a measure.DK is a direct measure of nontrivial ac-
cumulations of length scales on a streamline, providing a
local nonstatistical quantification of a geometrical cascade of
length scales of motion.

To acquire statistics of different such local ‘‘cascades’’ of
length scales within the turbulence, we calculated approxi-
mately 4000 streamlines on each 1283 grid of the F128 and
S128 data sets, beginning from points spaced uniformly eight
grid nodes apart from one another. These streamlines were
calculated by solving~3.1! in the instantaneous velocity
field, up to pseudotimet510TE , whereTE is the Eulerian
integral time scale of the turbulence.

After integration of all 4000 streamlines in both data sets,
we searched for ‘‘persistence of strong curvature’’ using the

FIG. 5. ~a! Plane spiralr;f20.5 generated on the computer for
the purpose of testing our box-counting algorithm. The location of a
point on the spiral is given by the radial coordinater and the angle
f52pnt , wherent is a real number between 0 and infinity that
represents the number of turns of the spiral.~b! Result of box count-
ing on the plane spiral of Fig. 5~a!. Kolmogorov capacityDK(d)
versus box scaled. The algorithm measuredDK51.3 with
s250.007 and accurately locateddmin between 0.1 and 0.2.
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algorithm described in the preceding section. 783 streamline
sections in F128 and 795 streamline sections in S128, one
out of five computed streamlines, had persistently strong cur-
vature. This is a large number considering that only one
streamline was computed in each realization of the large
scales, i.e., the initial points of the computed streamlines
were nearly one integral length scaleLp apart from each
other~Lp'11Dx in F128 andLp'12.4Dx in S128!. Using a
high-quality graphics workstation, we visualized all stream-
line sections with persistent strong curvature, and of these
386 in F128 and 380 in S128 clearly had an accumulating
geometry and 172 in F128 and 180 in S128 lay ondifferent
vortex tubes. The statistics of Kolmogorov capacities of
streamlines are obtained from this subset of 172 and 180
independent streamline sections.

Figure 6 shows two examples of box-counting results for
two of the 172 and 180 streamlines just mentioned. In both
cases a very well-defined scaling is found over a range of
scales from near the Kolmogorov scaleh to the Taylor mi-
croscalel'5Dx. The box-counting algorithm works well
and provides bothDK and dmin accurately. Note that the
smallest length scaledmin of the range of self-similar box-

counting scaling is slightly smaller thanh for one streamline
and slightly larger for the other. There is also a variation of
DK from streamline to streamline. In Fig. 6~a!, for example,
DK'1.05, and in Fig. 6~b! DK'1.25. Figures 6~a! and 6~b!
were not chosen because they are our best results. The good
quality of the self-similar scalings detected on these stream-
lines in a range of length scales from abouth to l is typical
of the 783 and 795 streamline sections that were singled out
by the algorithm for the detection of persistence of strong
curvature.

We tested the accuracy of TS13 interpolation against the
full Fourier summation~‘‘exact’’ interpolation! for 15 of the
783 streamline sections that form our conditional statistical
sample from the F128 data set.~The prohibitively high com-
putational cost involved prevented the use of Fourier sum-
mation on all streamline segments.! Figure 7 shows two typi-

FIG. 6. Examples of box-counting results for two spiral stream-
lines in the DNS turbulence. The Taylor microscalel'5. The Kol-
mogorov scaleh'0.55. BothDK anddmin are clearly obtained by
the algorithm.~a! DK'1.05 anddmin'0.75'1.4h, ~b! DK'1.25
anddmin'0.2'0.36h.

FIG. 7. ~a! TS13 interpolation of a spiral streamline in the DNS
turbulence~the faintest of the two curves! compared with interpo-
lation by full Fourier summation of the same streamline. For the
TS13 interpolation, we measuredDK'1.1. ~b! Another spiral
streamline whereDK'1.33. Here the TS13 and Fourier interpola-
tions are identical.
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cal comparisons. In Fig. 7~a! the TS13 interpolation diverges
after some time from the ‘‘exact’’ interpolation obtained by
full Fourier summation. In Fig. 7~b! the agreement is excel-
lent over the entire streamline section. The Kolmogorov ca-
pacityDK of the streamline section in Fig. 7~b! is apprecia-
bly larger than theDK of the streamline section in Fig. 7~a!.
This is typical of what we observed in the 15 tests; interpo-
lation errors are larger when theDK is smaller. Furthermore,
the DK measured for streamlines using TS13 interpolation
usually underestimatethe true value ofDK . This is easily
understood; interpolation errors come from missing steep
bends, as in Fig. 7~a! where the TS13 interpolation~the faint-
est curve on the plot! misses the curvature of the ‘‘exact’’
interpolation, and therefore produces a spiral or accumulat-
ing pattern which is less space filling than it should be, thus
leading to an underestimation ofDK ~see Vassilicos and
Hunt @4# for a discussion of the ‘‘space fillingness’’ of spi-
rals!. The bends of streamlines are generally steeper the
closer the value ofDK is to 1. Consequently, if a measure of
DK greater than 1 using TS13 interpolation is in error, the
error is an underestimate inDK and DK is indeed greater
than 1. The accuracy of measuredDK improves with increas-
ing DK.1 and the interpolation seems to increasingly un-
derestimateDK asDK→1. Note from Figs. 7~a! and 7~b! that
a surprisingly small number of turns is needed to detect the
Kolmogorov capacities.

In Fig. 8 we plot two histograms of measuredDK for the
172 and 180 independent streamline sections that have a per-
sistence of strong curvature in F128 and S128, respectively.
Of these streamline sections, 39% in F128 and 47% in S128
haveDK.1, specificallyDK between 1 and 1.5 in F128 and
between 1 and 1.6 in S128~Table II!. Figure 9 shows an
example of a scatter plot ofDK versus the minimum length
scaledmin in the range where the correspondingDK are well
defined. Note the concentration of values ofdmin aroundDx
and aroundDx/4. A typical example of a scatter plot ofDK
versuss2 is given in Fig. 10, wheres2 is the variance of
DK(d) aboutDK ~see Sec. III C!. In many cases~often when
DK is large! DK is well defined~i.e., s is very small com-
pared toDK! from l to dmin . In particular,DK2s.1 in
approximately one-fifth of the cases considered~32 out of
172 in F128 and 34 out of 180 in S128!. These results are
obtained from simulations wherel'5Dx and Dx'1.8h,
and the values ofdmin cluster aroundDx andDx/4.

B. Analysis of 2563 and 5123 data

To show that the identification of a significant number of
streamlines withDK.1 and that the values ofdmin obtained
from the 1283 data are not artifacts of the finite grid resolu-
tion, we repeated the same calculations with the data sets
S256 and S512, wherel/9.8'Dx'0.92h and l/19.4'Dx
'0.46h, respectively. We calculated approximately 2000
and 1000 streamlines, respectively, on the 1283 grids of the
S256 and S512 data sets by solving~3.1! in the instantaneous
velocity field up to pseudotimet510TE . The number of
streamline sections found with persistently strong curvature
is 560 in S256 and 173 in S512, that is, respectively, one out
of 3.5 and one out of 5.8 computed streamlines, which com-
pares reasonably well with the results from F128 and S128.
Visualizing all streamline sections with persistently strong

curvature, it turned out that of these, respectively, 285 and
130 clearly have an accumulating geometry, and 98 and 31
lie on different vortex tubes in the S256 and S512 high-
resolution velocity fields. Of these independent streamlines,
34% have aDK strictly larger than 1 and not larger than 1.47
in S256 and 24% have aDK strictly larger than 1 and not
larger than 1.26 in S512.

It must be stressed that both S256 and S512 are highly
resolvedsubsetsof the original S128 velocity field, corre-
sponding to a 643 and a 323 corner of S128~ 18 and

1
64 of the

computational domain!. We checked that, among the stream-
lines calculated only in those corners of S128 that corre-
spond to S256 and S512, the percentages of independent
streamlines with an accumulating geometry that have aDK
strictly larger than 1 are 30% and 18%, respectively, which
compare well with~and are in fact smaller than! the percent-
ages obtained from S256 and S512~Table II!. Furthermore,
the largest values ofDK measured in the corners of S128 that
correspond to S256 and S512 are 1.48 and 1.26, respectively.
Hence the percentages of independent accumulating stream-
lines withDK.1 increase and the maximum values ofDK
are unchanged when the resolution is improved.

FIG. 8. Histograms ofDK including onlyDK.1 ~a! for the 172
independent streamline sections detected by the algorithm for per-
sistence of strong curvature in F128 and~b! for the 180 independent
streamline sections detected by the algorithm for persistence of
strong curvature in S128~‘‘independent’’ implies that each stream-
line coils around a different vortex tube!.
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Scatter plots ofDK versusdmin for the high-resolution
data sets S256 and S512 give results similar to Fig. 10. It is
striking that the values ofdmin cluster around 2h andh/2 in
all data sets F128, S128, S256, and S512 independently of
the grid resolution. In Fig. 11 we plot histograms ofs2 show-
ing that the Kolmogorov capacities are increasingly well de-
fined with increasing resolution~s2 decreases on average
from S128 to S256 to S512!.

From visualizations such as Fig. 12 and 13, we observe
two very different types of accumulation of length scales on
the streamlines that have a persistence of strong curvature. In
Fig. 12 the streamlines accumulate towards a central axis and
the accumulation is primarily radial, whereas in Fig. 13 the
streamlines accumulate towards a limit circle and the accu-
mulation of length scales isalong the vortex tube. The limit
circle lies in a region of the vortex tube where the magnitude
of the vorticity attains a local minimum~see Fig. 13!. These
two types of streamline accumulating topology appear to be
quite generic in the small-scale turbulence field that we have
studied, and cannot be both accounted for in terms of the
simple straining fields of the Burgers and the Lundgren vor-
tices. Furthermore, as we discussed in Sec. II B, the very
existence of persistently curved streamlines with well-
definedDK.1 at the low Reynolds numbers of the present
simulations is evidence that the vortex tubes where these
streamlines reside are not Burgers vortices.

C. Streamlines of the most intense vortices

In the results of Secs. IV A and IV B, accumulating ge-
ometry was extracted from streamlines initiated from arbi-

trarily placed points uniformly spaced over subregions of the
data sets. The many visualizations that were made of the
spiral trajectories relative to the local enstrophy field
strongly suggest that the streamlines withDK.1 are prima-
rily associated with the more intense vortex tube structures.
We expect, therefore, that a larger number of independent
streamlines with persistently strong curvature would be
found if the extraction of streamlines were to begin within
those data points with the highest relative vorticity. We also
want to check that a similar if not higher percentage of in-
dependent persistently curved streamlines from this specially
chosen set haveDK.1.

We integrated streamlines beginning from all points in the
F128 data set with the highest relative value of enstrophy
such that these points covered 1% of the entire data set.
Although Jiménezet al. @7# described these points as defin-
ing the most intense vortex tubes~‘‘worms’’ !, not all the
chosen points are within well-defined tubelike concentrations
of vorticity, and we therefore expect only a fraction to dis-
play ‘‘persistent curvature.’’ Furthermore, of those stream-
lines that do display persistent curvature, several may sur-
round the same vortex tube; thus only a fraction of the total
will define independent streamlines surrounding different
vortex tube elements.

We integrated approximately 23 000 streamlines where
the enstrophyv2 is larger than 6.3 times the rms of the en-
strophy throughout the field of the simulation. The totality of
these intense vortex tubes is shown in Fig. 14. The stream-
lines were integrated for five integral time scalesTE using
the TS13 interpolation scheme. The algorithm for the detec-
tion of persistence of strong curvature detected such a
streamline section in approximately one of every four
streamlines integrated. Of these, 1425 were independent~i.e.,

FIG. 9. Scatter plot ofDK againstdmin for the 172 independent
streamline sections extracted from F128. The units on the abscissa
are such thatDx5151.8h. The apparent sharp cutoff in data
points at about 0.2 is an artifact of having artificially restricted the
search fordmin to values larger than approximately 0.3h in the
algorithm described in Sec. III C~ii !.

FIG. 10. Scatter plot ofDK againsts2, the variance ofDK(d)
aboutDK , for the 180 independent streamline sections extracted
from S128.

TABLE II. Highlights of analyses of streamline geometry.

F128 S128 S128 S256 S256 S512 F128

Portion of box extracted all all 1/8 1/8 1/64 1/64 all
No. of streamlines extracted 4000 4000 500 2000 62 1000 22 987
% independent streamlines,DK.1 39% 47% 30% 34% 18% 24% 42%
MaximumDK 1.5 1.6 1.48 1.47 1.26 1.26 1.68
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on different vortex tubes! persistently curved streamlines.
This number is much higher than the number of streamlines
extracted using an arbitrary uniform placement of initial
points.

Figure 15 is a histogram of the values ofDK for the 1425
independent streamline sections in the most intense vortex
tubes ~those which occupy only 1% of the total domain!.
Each one of these 1425 nonoverlapping streamlines was cho-
senat randomamong approximately one to five streamlines
detected on thesame vortex tube. We used precisely the
same box-counting algorithm to determineDK as in Sec.
IV A, in particular with the upper bound cutoff scale still
equal tol. The values ofDK below 1 suggest thatl is too
large an upper bound for the self-similar range of the geom-
etry of the streamlines at these extremely small scales of
motion. Clearly though, a large number of streamlines were
found with accumulating geometry andDK.1, specifically
42% of the 1425, which is a similar percentage to the one
found with randomly placed streamlines in the F128 and
S128 data sets. In fact, more accumulating streamlines with
DK.1 were extracted than what is shown in Fig. 15, since
we chose a representative streamline for each vortex tube at
random among an average of three streamlines per vortex
tube rather than pick out the streamline with the largest and
best definedDK . The streamlines withDK.1 are well de-
fined over a range of length scales extending froml to dmin .
We also found that, at these very small scales,dmin is often
approximately equal toh/2. Following the discussion in Sec.

II, the nonintegral values ofDK that we observe on spiral-
helical streamlines may reflect localized near-singular flow
structures in the regions surrounded by these streamlines.
These local near singularities may extend over a significantly
wide range of scales bounded from below by alocal viscous
cutoff scale that is a function of the local flow structure, and
may therefore differ from one near-singular vortex tube to
another. In the following subsection we study whether the
vorticity profile across vortex tubes can be approximated by
a well-resolved Gaussian at the resolution of this paper’s
DNS turbulence, in which case the width of this Gaussian
could provide a measure of the local viscous cutoff scale of
the vortex tube.

D. The vorticity profile across the vortex tubes

As discussed in Sec. II, the existence of streamlines with
DK.1 in such a low Reynolds number turbulence indicates
that these vortex tubes are not Burgers vortex tubes. The
analysis presented in this subsection shows that, even in the
highly resolved S512 turbulent velocity field, the vorticity
profile across the width of some of the vortex tubes is not a
well-resolved Gaussian~by which we mean that it is not well
resolved, or non-Gaussian, or both!. This analysis is based
on the spatial correlation of the enstrophyv25v•v with the
square of the viscous forcef 25f•f ~f52nr“3v! in the vor-
tex tubes around which streamlines with persistent curvature
are identified. This correlation is

FIG. 11. Histograms ofs2 ~a! for the 180 in-
dependent streamlines extracted from S128,~b!
for the 98 independent streamlines extracted from
S256,~c! and for the 31 independent streamlines
extracted from S512. These independent stream-
lines have been identified first by their persis-
tently strong curvature.
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C5
Š~ f 22^ f 2&!~v22^v2&!‹

Š~ f 22^ f 2&!2‹1/2Š~v22^v2&!2‹1/2
, ~4.1!

where the bracketŝ& imply conditional averages over grid
boxes visited by streamline segments with persistent curva-
ture and over thoseneighboringgrid boxes withlarger val-
ues of enstrophy. No more grid boxes are included in the
conditional average once no other neighboring grid boxes
can be found with larger enstrophy. In this way local vol-
umes of concentrated enstrophy equal to and larger than the
enstrophy along a persistently curved streamline section are
extracted from the data set for analysis. The averages in~4.1!
are carried out over these individual volumes of high enstro-
phy ~the vortex tubes! where the streamline sections coil.

We calculate the averageC̄ of C over many vortex tubes
extracted in the manner just described, and to probe increas-
ingly small scales of vortex motion we calculateC̄ over in-
creasingly small percentages of the total volume in these
vortex tubes. We do this by averaging over those portions of
individual extracted vortex tubes wherev2/vmax

2 >vth
2 /vmax

2

for increasing values of the threshold~vth
2 ! relative to the

local maximum enstrophyvmax
2 in each vortex tube. In this

way, we obtain curvesC̄~vth
2 /vmax

2 ! as in Fig. 17.
Due to viscous stresses deep within the vortex core, we

may expect the vorticity to reach a constant finite value at the
center of the vortex tubes, indicating solid body rotation at
the center, as in the case of the Burgers vortex@Fig. 16~a!#.
Close to the center the viscous force may therefore decrease
to 0. If the vortices are sufficiently well resolved and if local
cores of solid body rotation exist and extend over a grid size
Dx or more, thenC should be negative for large enough
values ofvth

2 /vmax
2 . This is becausef 2 should be small in the

innermost viscous core wherev2 is largest, whereas at the
edge of the vortex core, where vorticity gradients are highest,
the viscous force should reach a maximum@see example of
the Burgers vortex, Fig. 16~a!#. Hence, as the thresholdvth

2 is
increased andC is calculated over deeper parts of the inner
cores of the vortices and over a smaller number of increas-
ingly strong vortices,C should tend to21. This is indeed the
case for the Burgers vortex where, as shown in Fig. 16~b!, C
reaches20.9 whenvth

2 /vmax
2 '0.2. Figure 16~b! is an analyti-

cal result derived from~2.7! and is purely a consequence of
the Gaussian vorticity profile of the Burgers vortex.

What we observe in the simulated turbulence is very dif-
ferent from Fig. 16~b!. Figure 17~a! shows that in simulation
F128 C̄ remains positive over all values ofvth

2 /vmax
2 , and

Fig. 17~b! shows that in simulation S128C̄ decreases slowly
to small negative values that are strictly greater than20.1. In
all the plots ofC̄ versusvth

2 /vmax
2 ~Fig. 17!, the part of the

curve wherevth
2 /vmax

2 >0.7 is insignificant because fewer
than eight grid points are sampled above this threshold~grid
points are separated only by a distanceDx!.

To sample more deeply within the vortex tubes, we repeat
the calculation of the curveC̄~vth

2 /vmax
2 ! using the high-

resolution data sets S256~where Dx'0.92h! and S512
~whereDx'0.46h!. Whereas Fig. 17~b! is obtained from
vortex tubes in the entire volume of S128, Fig. 17~c! and
17~d! are obtained from vortex tubes, respectively, in1

8 of the
total volume of S256 and164 of the total volume of S512.
This is done because of computer limitations so that we al-
ways use a 1283 grid when calculating correlations. Hence
the correlation in S128 is calculated over 180 extracted vor-
tex tubes, the correlation in S256 over 98 extracted vortex
tubes and the correlation in S512 over 31 extracted vortex
tubes~see Secs. IV A and IV B!.

Because the sample sizes are different among the three
data sets and are not large, especially for the S512 data set,
the correlation plots in Figs. 17~b!–17~d! do not overlap.
Nevertheless, these correlations do agree in one surprising
and important respect: the spatial correlationC̄ between the
viscous force and the enstrophy in the extracted vortex tubes
does not fall below20.1 for all the thresholdsvth

2 /vmax
2 con-

sidered, in particularvth
2 /vmax

2 between 0 and 0.3. This ob-

FIG. 12. From the DNS isotropic turbulence with Rel'21. ~a!
Projection of vortex tube streamlines on a plane transversal to the
vortex tube in the small-scale turbulence.~b! Projection of the same
streamlines on the azimuthal plane of the vortex tube. The Kolmog-
orov capacitiesDK of these streamlines vary between 1.2 and 1.3.
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servation is independent of whether the grid spacing is
roughly double, equal, or half the Kolmogorov length scale
h.

These observations are significant because a well-resolved
Gaussian vorticity profile across the azimuthal plane of the
vortex ~as assumed, for example, by Jime´nezet al. @7#!, has,
from Fig. 16~b!, a correlation between the enstrophy and the
square of the viscous force that is below20.1 for all
vth
2 /vmax

2 >0.05. Figure 17, whereC̄.20.1 forvth
2 /vmax

2 be-
tween 0.0 and 0.3, is therefore inconsistent with a well-
resolved Gaussian spatial distribution of vorticity across the
extracted vortex tubes. Furthermore, if we anticipate the ex-
istence of a Gaussian spatial distribution of vorticity very
deep inside the core of the vortex where effects of friction
dominate, we can then conclude that the flow structure in the
vortex tubes extracted by our extraction algorithm is not to-
tally smoothed out by viscosity around scales of orderh.

It is interesting to note that if we restrict the sample over
which the average valueC̄ is calculated only to those vortex
tubes where we detect streamlines having strong persistent
curvature and a well-defined nonintegralDK , the curves
C̄~vth

2 /vmax
2 ! remain qualitatively the same as in Fig. 17.

V. CONCLUSIONS

Self-similar near-singular flow structure can be advanta-
geously identified and characterized by the self-similarity of
its streamlines in real space. We prove that the vorticity field
in an axisymmetric flow where spiral-helical streamlines
have well-defined nonintegral Kolmogorov capacities is nec-
essarily singular at the axis of symmetry, and find spiral-
helical streamlines around small-scale vortex tubes of low
Reynolds number isotropic and decaying DNS turbulence
that have nontrivial scaling properties with well-defined non-
integral Kolmogorov capacities over a fairly long range of
length scales extending from around the Kolmogorov length
scale to the Taylor microscale. Further studies over a range
of Reynolds numbers are needed to establish whether the
upper scale of the geometrical self-similar range of stream-
lines indeed scales with the Taylor microscale. Variations in
Reynolds number are also needed to establish the scaling of
the streamline cutoff scalesdmin , and to verify the existence
of two well-defined scales nearh. By comparing the spatial
correlation between enstrophy and the square of viscous
force in DNS vortex tubes to that in vortex tubes with a

FIG. 13. A number of axially accumulating streamlines withDK'1.33 around a small-scale vortex tube in the DNS isotropic turbulence
with Rel'19. The vorticity vectors are directed along the axis around which the streamlines coil, and point from left to right. The axially
accumulating streamlines are plotted with isoenstrophy surfaces withv2 equal to~a! 15 rms,~b! 12 rms,~c! 10 rms, and~d! 8 rms~the rms
of v2 is over the entire 1283 flow simulation!. Note that the streamlines approach limit circles at the region of minimum enstrophy along the
axis.
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Gaussian radial distribution of vorticity we conclude that the
vorticity profile of some DNS vortex tubes is not a well-
resolved Gaussian even when the DNS resolution is excep-
tionally high by the standards of current simulations~grid
size as small asDx'0.46h!.

Some additional clues as to the internal structure of these
vortex tubes are obtained from the study of streamlines; we
find that the self-similar geometry of streamlines with persis-
tence of strong curvature in low Reynolds number isotropic
turbulence has an accumulating cascade of length scales ei-
ther towards a point on the axis of the vortex~spiral-helical
streamlines! or towards a circle in axial regions of low vor-
ticity magnitude. Nonintegral Kolmogorov capacities are
found for either type of streamline accumulation. Our find-
ings also suggest that a significant number of vortex tubes in

low Reynolds number isotropic turbulence are not Burgers
vortices.

The Reynolds number is too low in these simulations for
the energy spectrum of the small-scale turbulence to exhibit
an asymptotic self-similar form. Yet, with the Kolmogorov
capacity of streamlines we are able to detect nontrivial self-
similar geometry in local regions in the flow, even when the
curved streamlines exhibit only a couple turns. This ability to
extract self-similar structure with minimal information
shows the usefulness of the Kolmogorov capacity of the flow
geometry as a localized measure of self-similar scaling and
near-singular flow structure that does not require a large
range of length scales to detect self-similar flow topology.
We have shown that the Kolmogorov capacity of streamlines
can provide an effective measure of the internal near-singular
structure of vortex tubes and can be used when the resolution
and/or the Reynolds number are low.

FIG. 14. Enstrophy isosurfaces in the entire 1283 turbulent flow
field ~F128! at v256.3 rms. The vortex tubes shown in this figure
cover 1% of the simulation domain, corresponding to the definition
of ‘‘worms’’ in Jiménezet al. @7#.

FIG. 15. Histogram ofDK for the 1425 independent streamline
sections with persistence of strong curvature in the vortex tubes of
Fig. 15.

FIG. 16. The Gaussian enstrophy profile of the Burgers vortex
and its consequences.~a! Schematic profile of radial variations of
enstrophy and the viscous force. For a Burgers vortex, the viscous
force per unit volumef52nr“3v ~r is the density of the fluid!
has only one nonzero component which is azimuthal,f f5

2r(a2Reg/8p)re2ar2/4n. The viscous force is negligible deep
within the core and far from the vortex, and rises to a maximum at
the outer edge of the vortex core, exactly atR5A2n/a. At the
center of the vortex, where the vorticity is maximum and finite, the
viscous force vanishes, indicating solid body rotation at the center.
~b! Spatial correlationC, between the square of the viscous force
and enstrophy, againstvth

2 /vmax
2 for the Burgers vortex. Exact ana-

lytic curve derived from~2.7! and the above equation@itself derived
from ~2.7!#.
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APPENDIX:
THE INVISCID LUNDGREN VORTEX:

A NEARLY AXISYMMETRIC
‘‘COMPLEX’’ SINGULARITY

The Lundgren vortex is anasymptoticsolution of the 3D
Navier-Stokes equations as timet→`. A particular case of
this vortex is a sum of 2D semi-infinite spiral vortex sheets
that are subjected to differential rotation and persistent strain
in a plane aligned with the vorticityv. The basic ingredient

of the Lundgren collection of spiral vortex sheets is a single
unstrained and inviscid 2D spiral vortex sheet which, in cy-
lindrical coordinates (r ,f,z), is given by

v~r ,f,t !52p f ~r !d„f2V~r !t…, ~A1!

where the vorticityv(r ,f,t) is in the z direction, andd is
the Dirac delta function. Equation~A1! is a long-time as-
ymptotic solution of the Euler equations provided that

r f ~r !5
d

dr
r 2V~r ! ~A2a!

and

d

dr
V~r !,0. ~A2b!

The circulation around a circle of radiusr is
g(r )52pr 2V(r ), the f-averaged vorticity isf (r ), and
~A2a! is simply Kelvin’s theorem. The differential rotation
of the spiral vortex is represented byV(r ); it should be
noted that the asymptotic solution~A1! is fully determined
whenV(r ) has been chosen under the constraint~A2b!.

FIG. 17. Ensemble averaged spatial correlationC̄ of enstrophy with the square of the viscous force against enstrophy thresholdvth
2 /vmax

2 .
The ensemble averaging includes only the vortex tubes where streamlines were detected with persistent curvature.~a! F128,~b! S128,~c!
S256, and~d! S512.
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To obtain a full asymptotic solution, the vorticity~A1! is
strained in the (z,r ) plane and many such strained spiral
vortex sheets are added together with the same center of the
spiral and the same external strain. Finally one replaces the
time t by a ‘‘strained time’’T(t) ~see Lundgren@2,3#!.

In this appendix, we first compute the radial and azi-
muthal components of the velocity field in one Lundgren
strained spiral vortex sheet. The vorticity is given by~A1!
and the axisymmetric straining flow field by~2.8a! and
~2.8b! @c(r ,z)5(a/2)r 2z andl52 as in the Burgers vortex#.
In order to calculate the componentsur anduf of the fluid
velocity at each point of the flow, we first calculate the
stream functionC(r ,f,t) that corresponds to the unstrained
2D incompressible vortex sheet~A1!; C(r ,f,t) is related to
the vorticity by

v52S ]2C

]r 2
1
1

r

]C

]r
1

1

r 2
]2C

]f2 D . ~A3!

The radial and azimuthal components of the velocity field
around the Lundgren strained vortex sheet are given by

ur52
ar

2
1
1

r

]

]f
C„AS~ t !r ,f,T~ t !…, ~A4a!

uf52
]

]r
C„AS~ t !r ,f,T~ t !…, ~A4b!

where the effects of the strain have been taken into account
and whereS(t)5exp[* 0

t a(t)dt] is the stretch ratio and
T(t)5* 0

t S(t)dt the strained time@see Lundgren@2,3#; the
strain rate may be a function of time, i.e.,a5a(t)#.

Following Lundgren @2#, we expand the vorticity and
stream function in Fourier series inf. The vorticity ~A1!
may be written

v~r ,f,t !5 f ~r ! (
n52`

1`

ein@f2V~r !t#, ~A5!

and the stream function

C~r ,f,t !5 (
n52`

1`

Cn~r ,t !e
inf. ~A6!

One can check that whennÞ0,

Cn~r ,t !'
t22f ~r !

n2@dV~r !/dr#2
e2 inV~r !t ~A7!

is an asymptotic (t→`) solution of

f ~r !e2 inV~r !t52S ]2Cn

]r 2
1
1

r

]Cn

]r
2
n2

r 2
CnD , ~A8!

which is the Fourier-transformed version of~A3!.
Forn50, ~A8! and~A2b! imply ~setting the additive con-

stant to 0!

]C0

]r
52rV~r !. ~A9!

It follows that ast→`,

C~r ,f,t !'C0~r !1 (
nÞ0

t22f ~r !

n2@dV~r !/dr#2
ein@f2V~r !t#.

~A10!

At this stage, one needs to sum a Fourier series of the type

(
nÞ0

einx

n2
52(

n51

1`
cosnx

n2
,

and standard Fourier methods lead to

(
n51

1`
cosnx

n2
5

p2

6
1
1

4 Fx22p intS x

2p D G2

2
p

2 Fx22p intS x

2p D G ,
where int(x/2p) is the integer value ofx/2p. Consequently,
~A10! may be summed up to give

C~r ,f,t !'C0~r !1
t22f ~r !

@dV~r !/dr#2 H p2

3
1
1

2 Ff2V~r !t22p intS f2V~r !t

2p D G22pFf2V~r !t22p intS f2V~r !t

2p D G J .
~A11!

@By careful injection of~A11! into ~A3! one can recover
~A1!.#

From ~A4a! and ~A11!,

ur'2
ar

2
1

T~ t !22f „AS~ t !r …

r $~dV/dr !@AS~ t !r #%2
Ff2V„AS~ t !r …T~ t !

22p intS f2V„AS~ t !r …T~ t !

2p D 2pG , ~A12a!

and from~A4b!, ~A11!, and~A9! one obtains

uf'S~ t !rV„AS~ t !r …1O„T~ t !21S~ t !… ~A12b!

ast→`. Note that there are contributions tour from both the
strain-rate field and the spiral vortex sheet. Note also the
jump in ur across the sheet of vorticity atf
5V„AS(t)r …T(t). A similar jump can be found in the
O„T(t)21S(t)… term of uf associated with the spiral vortex
sheet. The contribution of the induced velocity from the vor-
tex sheet tour anduf tends to 0 ast→`, and the azimuthal
velocity is dominated by the differential rotation
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V„AS(t)r … which rotates the entire sheet structure. Finally,
note that the leading order in~A12! is axisymmetric, so that
the flow tends towards axisymmetry ast→`.

Lundgren@2# shows how thed function in ~A1! may be
modified to account for nonvanishing viscosity and for
v(r ,f,t) to be an asymptotic solution of the Navier-Stokes
equations under the same condition~A2!. Here we only deal
with an inviscid Lundgren asymptotic solution which has a
singularity in vorticity down to vanishing scales. This singu-
larity is ‘‘complex’’ because of thespiral accumulating
structure of the jumps in velocity which extends all the way
to the spiral’s center. In fact, the Lundgren singularity is
twofold: the spiral accumulation of the vortex sheet@see
~A1!#, and the simple singularity inV(r ), sinceV(r ) is
monotonically increasing asr→0 @see ~A2b!#. Such com-
plex singularities are not included in the family of simple
singularities that generate streamlines withDK51 as we dis-
cussed in Sec. B A. Streamlines can exist withDK.1 in the
Lundgren spiral vortex sheet. The strain rate is identical to
the one in the Burgers vortex, and again severely limits the
region of space whereDK.1. In that restricted region, how-
ever, theDK of streamlines is a direct reflection and a simple
function of the Kolmogorov capacity of the Lundgren spiral
vortex sheet and of the related singularity inV(r ).

The equationr5r (f) of a streamline’s projection on the
(r ,f) plane may be obtained by integrating

df

dr
5

uf

rur
'2

4pAS~ t !

a

V„AS~ t !r …

r
, ~A13!

to leading order in time. Consequently, the vortex sheet and
the projected streamline have the same spiral geometry. That
geometry is a direct reflection of the differential rotation of
the vortex sheet, and therefore, by virtue of~A2a!, of how
thef-averaged vorticityf (r ) is radially distributed in space.
If V(r );r2a, the projection of the streamline takes the spi-
ral form r (f);f21/a, which is the same spiral form
adopted by the vortex sheet. The Kolmogorov capacity of
this spiral streamline projection is~Vassilicos and Hunt@4#!

DKproj511DK8 ~A14a!

if the spiral has only a few turns, and

DKproj5max~1,2DK8 ! ~A14b!

if the spiral has a large number of turns, where

DK8 5
a

11a
. ~A14c!

The Kolmogorov capacity of the spiral vortex sheet is 1
1DKproj because the number of boxes of sized needed to
cover the sheet is equal to the number of boxes of that size
needed to cover the spiral intersection of the sheet with the
plane normal to thez direction (}d2DKproj) times the number
of boxes needed to cover the sheet along thez axis ~}d21!
~see the box-counting algorithm in Sec. III, and Vassilicos
and Hunt@4#!.

Note thatDKproj is directly related to the powera that
determines the radial fall off of thef-averaged vorticity
f (r );r2a. If the radial decrease ofV(r ) is faster than any
power lawr2a, thenDKproj52 and the Kolmogorov capacity
of the spiral vortex sheet is 3. The measure of the Kolmog-
orov capacity of a streamline around a strained spiral vortex
sheet is therefore a measure of the vorticity variation radially
within the vortex as well as of the Kolmogorov capacity of
the spiral vortex sheet itself.

The Kolmogorov capacity of a 3D streamline isDK51 if,
after one turn of the spiral, the radial displacementDr n is
smaller than the axial displacementDzn . This is indeed the
case with the Lundgren vortex because of the persistent
strain, unless the box-counting algorithm is limited to a re-
gion whereDzn!Dr n , in which caseDK5DKproj . When
V(r );r2a, Dr 15r 0(1/aa22p)1/2a2r 0 and
Dz15z0(1/aa22p)21/a2z0 , and the region whereDK
5DKproj is bounded by

z0,r 0
~1/aa22p!1/2a21

~1/aa22p!21/a21
. ~A15!
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