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Self-similar spiral flow structure in low Reynolds number isotropic and decaying turbulence
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It is rigorously proved for axisymmetric incompressible flows with bounded axial vorticity at infinity that if
a spiral-helical streamline has a Kolmogorov capa@ityx-counting dimensigrD > 1, then the velocity field
must have a singularity at the axis of symmetry. Furthermore, certain types of singulariti y4tll can be
excluded. The Burgers and the Lundgren vortices are examples of strained vortices with different types of
near-singular structure, and in both cases sections of streamlines have a well-@gfindd However, the
strain severely limits the region in space whérg is larger than 1. An algorithm is developed which detects
streamlines with persistently strong curvature and calculates botb thef the streamlinesnd the lower
bound scales,,, of the range of self-similar scaling defined By . Error bounds oDy are also computed.
The use of this algorithm partly relies on the fact that two to three turns of a spiral are enough to determine a
spiral'sDy . We detect well-defined self-similar scaling in the geometry of streamlines around vortex tubes in
decaying isotropic direct numerical simulation turbulence with exceptionally fine small-scale resolution and
Re, around 20. The measured valuesidf vary fromDyg=1 to Dx~1.60, and in general the self-similar
range of length scales over whidhy is well defined extends over one decade and ends at one of two
well-defined inner scales, one just above and the other just below the Kolmogorov micrgséeidentify
two different types of accumulation of length scales viit>1 on streamlines around the vortex tubes in the
simulated turbulence: an accumulation of the streamline towards a central axis of the vortex tube in a spiral-
helical fashion, and a helical and axial accumulation of the streamline towards a limit circle at the periphery of
the vortex tube. In the latter case, the limit circle lies in a region along the axis of the vortex tube where there
is a rapid drop in enstrophy. The existence of spiral-helical streamlines with well-d&iged. suggests the
possibility of a near-singular flow structure in some vortex tubes. Finally, we present some evidence based on
the spatial correlation of enstrophy with viscous force indicating that the spatial vorticity profile across vortex
tubes is not a well-resolved Gaussian at the resolution of the present simulp8&0863-651X96)04607-7

PACS numbd(s): 47.27—i

[. INTRODUCTION silicos and Hun{4] and Hunt and Vassilicogl]). Noniso-
lated singular flow structure could be produced by chaotic

Hunt and Vassilicod1] pointed out that a self-similar advection, for example, of the small scales by the unsteady
energy spectruni(k) ~k~ 2P wherep is a nonintegefsuch larger scale motions of the turbulence.
as Kolmogorov's p=2) impliesthe existence of near sin- Neither the mixture of simple, complex isolated, and non-
gularities in the turbulent velocity field that cannot simply beisolated near singularities, nor the distribution in space of
isolated discontinuities in the velocities or their derivatives,these near singularities in the turbulence is known, either at
as in the case of plane vortex sheéss.near singularity or low or high Reynolds numbers. The near singularities im-
near-singular flow exhibits the asymptotic structure of a sinplied by a self-similar power spectrufsuch as Kolmogor-
gularity outside a limited friction-dominated region where ov’'s energy spectruirmust have self-similar scaling proper-
viscosity smooths out the flow. Near singularities may tendies on average. However, not all imaginable near
to singularities in the limit where the viscosity—~0. How-  singularities have such scaling properties. What flow struc-
ever, the limitv—0 for turbulent flows lies outside the scope tures in the small-scale turbulence carry near singularities
of the present papgrThese near singularities must fall in with self-similar scaling properties? Given that near singu-
one or more of the following three categories: simple neatarities necessarily exist in high Reynolds number turbulence
singularities[Fig. 1(a)], complex isolated near singularities whereE(k)~k ™2 andp is a noninteger, do near singulari-
[Fig. 1(b)], and nonisolated near singulariti¢Big. 1(c)].  ties also exist in lower Reynolds number turbulence?
However, the precise nature and origin of these near singu- Recent laboratory experiment€Cadot, Douady, and
larities is not known. They could be complex isolatedcu-  Couder[5], Villermeaux, Sixou, and Gagni®]) and direct
mulating near singularities if, for example, small localized numerical simulationéDNS) (see Jimaezet al.[7], and ref-
shear layers exist in the turbulence that become unstable amdences therejrhave led to the discovery of strong coherent
lead to a spiral vortex sheet structisee Lundgref2,3]) or  and elongated vortices among the small scales in a variety of
simple power-law near singulariti¢the azimuthal velocity low-to-moderate Reynolds number turbulent flows. In par-
u, of two-dimensional(2D) inviscid point vortices varies ticular, Jimaez et al. [7] demonstrated that the strongest
with cylindrical radiusr according tou,~r~9, q>0]. Both  vortex tubes are a necessary product of the evolution of both
of these near-singular flow patterns have a scaling symmetryorced and decaying isotropic turbulence. However, the ori-
or self-similar flow structure, around their centésge Vas- gin and internal structure of these vortex tubes is not yet
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FIG. 1. In 1D, (a) the functionu(x)=x"® has an energy spectruf(k)~k >3 (b) the functionu(x)=sin(x ) has an energy
spectrumE (k) ~k ™3 (c) the Weierstrass function(x) == _ ok 2 ~2sin(k,x) wherek,=y" with y>1 andDzé has an energy spectrum
E(k)~k %3,

understood. Two different mechanisms for their formationwe now have access to three-dimensional numerical low-to-
are currently considered by various workers in the field. Theanoderate Reynolds number turbulence data from which the
first is that vortex tubes originate from strained vorticity, 3D flow structures where near singularities may be residing
such as the Burgers vortex, for example. The second is thatn be visualized and quantitatively analyzed. For such data
they are the result of a shear instability leading to a spiralt may be possible to investigate whether near singularities
roll-up of vortex sheets. In the first case, a simple velocityexist in low Reynolds number turbulence, and specifically
near singularity of the ~9 type outside a limited friction- whether near singularities are manifest by the vortex tubes of
dominated region may exist; for example, the azimuthal vethe small-scale turbulence. In this study we analyze a suc-
locity of the Burgers vortex drops off as ! outside the cession of identical turbulence velocity fields with increasing
vortex core. In the second case, the internal vortex and vesmall-scale resolution. In particular, we analyze an excep-
locity structures would have a complex isolated near singutionally high-resolution(512%) turbulence simulation at Re
larity reflected by a spiral distribution of vorticity within a (the Taylor microscale Reynolds numpef order 20 with
vortex tube. A model for such vortex near singularities is theresolved scales below the Kolmogorov scaleBy compar-
Lundgren[2,3] strained spiral vortex which is an asymptotic ing different resolution simulations of the same turbulence
solution of the Navier-Stokes equations for long times. we can confirm results concerning local near-singular flow
Attempts to answer questions concerning the existencstructure obtained with lower-resolution simulations.
and nature of near singularities in turbulent flows may be Even with a succession of high-resolution 3D turbulent
made by recourse to data and with appropriate diagnostieelocity fields, conventional methods are not sharp enough to
tools. Kevlahan and Vassilicd8] developed tools based on adequately detect and analyze flow near singularities, and
fractal and wavelet methods which they applied to one-nhew tools are needed. In typical well-resolved direct numeri-
dimensional experimental high Reynolds number turbulenceal simulations, the grid size is approximately, 2nd vortex
data in an attempt to determine whether and to what extertibes typically cover only five to ten grid points across their
high Reynolds number turbulence near singularities are isowidth. It is therefore neither practical nor fruitful to proceed
lated (e.g., spiral or nonisolated(e.g., fractal. With DNS, by trial and error and fit different functional forms to the
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velocities and vorticities at these few points or to directlyprocedure to isotropic decaying turbulence and the results.
plot these local velocity and vorticity distributions for mul- We conclude in Sec. V.
titudes of vortices throughout the computational domain in
an attempt to directly ascertain internal vortex structure. In
fact, such direct tests have already been attempted, with in-
conclusive results. Vincent and MeneguiZ], for example,
show a “cut through a typical vorticity tube along a direction
perpendicular to its axis” that suggests a spiral vorticity
structure, while Jimeez et al. [7] plot the “radial vorticity
distribution for different cross sections along a typical From a fluid mechanics point of view, spiral streamlines
worm,” “showing that the Gaussian model is at least rea-occur naturally in turbulence around tubelike concentrations
sonable. This model is consistent with that of an axiallyof vorticity when pressure forces cause fluid motion along
stretched equilibrium Burgers vortex.” Because unambiguthe tube axis. These pressure forces may be associated, for
ous conclusions cannot be drawn from this direct approactgxample, with local straining of the vortex tube or local di-
new fluid mechanical measures are needed which are directiergence of the vortex lines. The topology of the locally
sensitive to the asymptotic similarity and near-singularityspiraling streamlines is therefore a reflection of the structure
properties of localized turbulent flow structures, and whichof the local vorticity and strain-rate fields.
can extract such local information from the flow even in From a dynamical systems point of view, spirals occur in
simulations with more typical resolutions. the vicinity of particular invariant manifolds such as hyper-
Because of the common occurrence of local axial motiondolic points. Stability analysis can reveal the spiral structure
within vortex tubes, caused by straining, for example, typicanear the manifold, but such analysis being linear, the spiral’'s
streamlines inside and around vortex tubes in turbulent flowgeometry is only known very close to the hyperbolic point
can be expected to be curves that are spiral in nature. Mogthere the spiral is logarithmic. Logarithmic spirals, how-
smooth or regular curves, and even most regular spiragver, have a Kolmogorov capacifyy=1 (see Vassilicos
curves, have trivial integral Kolmogorov capacitiésox- — and Hunt[4] for the Kolmogorov capacity of spirglsThe
counting fractal dimensions However, there exists a re- existence of streamlines wifby larger than 1 is therefore a
stricted class of regular spirals that have a nonintegral “frachontrivial proposition which involves regions of space where
tal” dimension or Kolmogorov capaciti, (see Vassilicos the nonlinearities of the system cannot be neglected. We in-
and Hunt[4]). In Sec. Il of this paper we prove that axisym- vestigate here the relation between the Kolmogorov capaci-
metric incompressible flows with bounded axial vorticity thatties of streamlines and the combination and nature of strain-
have spiral-helical streamlines with Kolmogorov capacitiesrate and differential rotation that can cause these capacities
strictly larger than Imusthave a singularity in the Eulerian to be nontrivial in incompressible flows.
velocity field. Hence the Kolmogorov capacity of a spiral-
helical streamline surrounding the viscous core of a vortex
tube indicates the near-singular structure of the vortex tube
itself. For example, self-similar scaling properties of stream-
lines around a Burgers or a Lundgren vortex reflect their In this section we prove the following statemeirt: an
vorticity and strain-rate structure, and the actual nonintegrahxisymmetric incompressible flow with bounded axial vortic-
value of the Kolmogorov capacit « of their streamlines is ity at infinity, if a helical streamline spirals in towards the
determined by the scaling properties of the near singularityaxis of symmetry with a Kolmogorov capacity strictly larger
the details of the straining field, and the Reynolds number.than 1, then the Eulerian velocity field must have a singular-
In this paper we directly identify and systematically ana-ity at a finite location on the axis
lyze vortex tubes using the Kolmogorov capacity of the ge- We derive this result analytically by proving it®nverse
ometry of individual streamlines associated to vortex tubesvhich isin an axisymmetric incompressible flow with helical
as a measure dbcal self-similar scaling and near-singular streamlines that spiral in towards the axis of symmetry, if the
flow structure. This measure is robust at low Reynolds numEulerian velocity field is regular (no singularities) near the
bers. We study the self-similarity properties of streamlinesaxis of symmetry and the axial component of the vorticity is
around small-scale vortex tubes in isotropic decaying turbubounded near the axis at infinity, then the Kolmogorov ca-
lence where the Taylor microscale Reynolds number igpacity of these streamlines must be-EL.
Re,~20, too low for a self-similar energy spectrum to exist.  In detail, the assumptions of this converse statement fol-
It should be stressed from the onset that we are searchirigw.
for what may be rare but perhaps significant events. The (1) Axisymmetry and incompressibilitwhich imply the
suggestion of this paper’s fractal analysis of streamlines igxistence of a Stokes stream functig(r,z) that is indepen-
that near-singular self-similar flow structure exists around alent of the azimuthal cylindrical angk¢ and only depends
significant number of local high vorticity regions in low Re on the cylindrical coordinates (distance from the axis of
decaying turbulence. It is well known, however, that highsymmetry andz (distance along the axis of symmetrifhe
vorticity regions with vortex tube topology fill only a small radial and axial cylindrical velocity components are, respec-

Il. THE RELATION
BETWEEN THE SELF-SIMILAR SPIRAL
GEOMETRY OF STREAMLINES
AND THE EULERIAN VELOCITY, VORTICITY,
AND STRAIN-RATE FIELDS

A. Singularities and streamline capacities
in axisymmetric incompressible flows

percentage of the total domain of the turbulence. tively,
In Sec. Il we discuss the DNS data used, the interpolation
schemes, and our method afstematic local“fractal” U= — 14 y 2.13
r 3 .

analysis, and in Sec. IV we discuss the application of the r gz
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Lo 2.1b '
U=r 5 ¥ (2.1b
(2) Regularity of the velocity field as—+0 for all values Az
of z, and at any small value of r as z is variékhis means
that asr—0,
Y(r,2)~r'F(2), 2.2 z
A
and the azimuthal velocity component o

Uy(r,2)~r"G(2), (2.3 (a)

whereF and G are regular functions af at all noninfinite
values ofz, andm=1 for regularity and incompressibility;
the regularity ofu, andu, requires that=2. However, the
minimum requirement on m and | for the present proof to be
valid is not regularity of the velocity field, but the weaker L
requirement that m and | be real numbers such ttmat-1)/
>0 and 1>0. We state our assumptions in terms of regular-
ity for the sake of simplicity of exposition, but the actual

assumptions are even weaker than that. This is made clear in Ary
what follows.

From(2.1)—(2.3), thez andr components of a streamline f\
are related bydr/dz=u,/u,~—rF'(2)/IF(z) as r—0
[F'(2)=(dF/d2z)(z)], which, providedF(z) does not van-

ish, implies that

(rlre)[F(z)/Fy]~1 (2.9

asr—0 (ro andF are constants that depend on the particu- ()
lar streamling

(3) Existence of helical streamlines that spiral in towards  FIG. 2. Schematic drawings d8) the projection of a spiral-
the axis of symmetry of the flow and remain helical arbi-helical streamline on an axial plane, afl) the projection of the
trarily close to this axisAs explained in the next paragraph, same streamline on the azimuthal plane.
this assumption implies that(z) # 0 for all z greater than,
say, z=0, and hence guarantees the validity (8f4) for =~z and decreasing. The derivatived¢/dr taken along the
z>0. Let us first point out that as the limit-0 is taken on  streamline is therefore strictly negative; beca#sgz)>0
particular helical streamlines that spiral into the axis of sym-for z>0 and because the streamline’s projection on the azi-
metry, (2.4) implies thatF(z) must tend monotonically to- Mmuthal plane obeys
wards infinity (becausd >0). This monotonic increase in
F(z) is not possible unlesg—o since F(z) is a regular d_‘f’:ﬁ%_ m1 G(2) 2.5
function of z at all noninfinite values of. HenceF(z) must dr ru, F'(2) '
be a monotonically increasing function nf

If F does vanish at, sag=0, its regularity implies that asr—0, G(z) must be strictly positive foz>0.
F(z)%Czb asz—0, whereC is a constant and the exponent  (4) Boundedness of the axial component of the vorticity
b is a strictly positive integeri{=1). Nearz=0 and as near the axis at infinityThe axial component of the vorticity
r—0, u~-bCr'~1z°7! and u,~ICr'"2z*. Considering ®,~(m+1)r""'G(z) asr—0, and its boundedness implies
the four possibilities based on whetl@iis positive or nega- thatG(z) is bounded ag— .
tive andb even or odd, streamlines either move away from We now show that the Kolmogorov capacity of the spiral
z=0 and towards the axis of symmetry or towarmisO and  streamline isDy=1. In Fig. Za) we plot the streamline’s
away from the axis of symmetry. In the plare 0, stream-  projection on an axial plane. From tmh to the (+1)th
lines may spiral in towards the axis without leaving the plangturn of the streamlingi.e., the streamline’sp varies from
z=0 and therefore without being helical. Since we assum@2 to (n+1)27] the streamline’z coordinate changes by
that a streamline exists which spirals in towards and is helian amountAz,=z,,,—2,. The distance between two suc-
cal arbitrarily close to the central axif,(z) must remain cessive turns of the spiral streamline in 3D spaceljs
different from 0 along that streamline when the streamline is= \/(Arn)2+ (Azn)z, where Ar,, is the distance between
sufficiently close to the axig;2.4) is valid over that region consecutive turns of the streamline’s projection on the azi-
where the streamline is spiraling close to the axis. muthal plandgsee Fig. 2b)]. The Kolmogorov capacity «

Another consequence of the streamline’s spiraling to-of the streamline beyond=0 is equal to 1 if there isi0
wards the axis is that the azimuthal anglé®) variation  accumulation of length scald¥assilicos and Hunf4]). An
along the streamline is such thatincreases with increasing accumulation of length scales means thatshould tend to O
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asn—o. The streamline’s spiraling towards the axis implies aRe, 2
thatAr,—0 asn— <. However, the boundedness®(z) as o(r)= e e arm (2.7
z— oo combined with the fact thd(z) — o« asz— o implies

that Az, —< asn—. Indeed, from(2.4) and (2.9 it fol-  \\nere  is the kinematic viscosity, Rey/v, and y is the

lows that circulation of the vortex, specificallyy=2[ 5w(r)r dr.
This flow is sustained by an external straining velocity field

(n+1)2m Mn+1 el G(z(r)) derived from the Stokes stream functiaf=(a/2)r?z in

T ) on do~— . F'(z(r)) which a is the strain rate:
F rl)ﬁ_l z, G(z u,=az, (ZSa

_ (Foro” 7 j 4, 22 2.6 i

I 2 F*(2)
ar

u.=— ? (28b)

asr—0, whereB=(m+1)/I>0. Becausds(z)/F#(z) is a
decreasing positive function af (2.6) can only be satisfied
if Az,—» asn—o. HenceA,—o» asn—o, no accumula-
tion of scales exists, and therefddg = 1. [Strictly speaking, y -
this conclusion only requires th&(z) does not increase Ug(n)=5—(1-e™' 12R%) (2.809
with z at a rate faster thaf”(z).] 21
Intuitively, the above argument may be stated as follows: _ )
because the flow field is regular and incompressible, it take¥'N€réR=y2v/a is the radius of the vortex core. Note that
the form (2.2), (2.3), and the helical-spiral streamline must | =2 [comparey=(a/2)r°z with (2.2)], and thatu, is sin-
spiral in towards the axis but also towards ever increasin@Ular outside the core wheren®,~y/r, som=—1 [see
values ofz; and because the axial component of vorticity is (2-3]- The Burgers vortex is an example of an axisymmetric
bounded at large values af the axial motion is much faster N€a&r-singular vortex where streamlines exist widg>1;
than the azimuthal motion, which implies thez, mustalso M= —1 is marginally outside the domain of validity of the
increase indefinitely as— . Hence there is no accumula- "€Sult in Sec. 11 A thaDy =1 when=(m+1)/1>0 and

tion of length scales, even though the streamline is spiral an 0. . .
converges towards the axis, and therefre=1. The streamlines of the Burgers vortex are helical around

Note that this proof does not require thatbe larger than € Z axis and spiral in ther( ¢) plane with a projection in
or equal to 1; it is only required th@=(m+1)/l andl be  that plane given by
strictly positive. Hence there existingular Eulerian flow
fields where spiral streamlines dot have aD larger than do _ Y (1_e7r2/2R2)_ 2.9

Vorticity arises from the azimuthal velocity component

1; for example(2.2) and(2.3) with negative real values oh dr mar3
such thatm>—1 andl>0.

We now consider an example of an axisymmetric andA streamline starting at a distancg that is larger than the
incompressible near-singular Eulerian flow field whibdbes  vortex core radiusR revolves around the cone, times be-
give rise to streamlines witB>1 in certain regions local fore reaching the core at=R, and
to the vortex if the Reynolds number is large enough, and

where the effect of strain is to reduce the Kolmogorov ca- _ Re, 1— R 2 21
pacity fromDy>1 towards 1 in other regions local to the Ne= g2 ro) |’ (210

vortex. In the Appendix we discuss an example of a nearly
axisymmetric incompressible flow field with a “complex” Clearly, Re, needs to be fairly large if there is to be a sig-
(spira) vorticity singularity. nificant number of revolutions before the streamline enters
the core. When this is the case, the streamline’s projection on
the (r,¢) plane takes the spiral form($)~ ¢~ 2 outside
the core, and its Kolmogorov capacity is given Dy
=1+% [from a direct application of the formula
D¢=1+1/(1+Db) for spirals r(¢)~ ¢ °, b>0, which is
valid when the number of turns of the spiral is not more than

The Burgers vortexBurgers[10]) is often used as a roughly four to five turn§ however, if the spiral has more
model for small-scale turbulence and is an exact steady s@han four to five turns, in which cade, =max(1,2/(1+b))
lution of the Navier-Stokes equations where the continuou§see Vassilicos and Hufi#]), then D pro= ¢ For moderate
action of strain and viscous diffusion balance to give a vorg|yes of Rewheren <1, the streamlines rapidly shoot into
tex core of steady, finite size. It has a self-similar energithe vortex core, nearly as straight lines. Inside the vortex
spectrum E(k)~k™* for k small [specifically E(k)  core, the streamlines are logarithmic spirals given by
o« 2k~ Le~ (R¥? in terms of quantities defined beldwvhich

Y q
reflects the near-singular behavior of the velocity field out- r(¢)~e (4mRe)$ (2.1
side the vortex core.

In cylindrical coordinatesr( ¢,z), the velocity is along and the Kolmogorov capacity of the streamline’s projection
the z direction with magnitude on the ,¢) plane isDy = 1.

B. The Burgers vortex:
An axisymmetric “simple” velocity near singularity
(=2, m=-1), and the effects of strain
and Reynolds number onDg
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Note that aD . larger than 1 detects that regiontside This conclusion is even stronger for the simulations ana-
the vortex core wherei, is singular. Conversely, Dy,  lyzed here where Re-20. Based on the vortex Reynolds
=1 insidethe vortex core where,~r. numbers measured by Jinezet al. [7], Re, should be well

The Kolmogorov capacities of a streamline in 3D spacebelow 200 for almost all vortex tubes in the simulations ana-
and of its projection in ther( ¢) plane are not the same, in lyzed here. If the turbulence vortex tubes in our simulations
general. For a steady Burgers vortex, streamlines and fluidre Burgers vortices, it should be very unlikely to find
particle paths coincide, and a streamline’s coordinatasd  streamlines with more than two turns am>1 in 3D
z depend on the parameter time as z(t)=z,e*" and space—seé€2.10. As shown in Sec. IV, however, we find a
r(t)=roe @' wherez,, r, are the coordinates at=0.  significant number of high-intensity vortex tubes in our
For large enough values af, the Kolmogorov capacity of simulations that have spiral streamlines wiitx>1, sug-
the streamline iD =1 because the velocities in the axial gesting that these high-intensity vortex tubes in the isotropic
direction are much higher than the velocities in the radiaturbulence are not Burgers vortices. Furthermore, because
direction. Indeed, when the displacementziafter one turn the probability of finding streamlines in our simulations with
of the spiral streamline is larger than the displacement, in nontrivial Kolmogorov capacities is not small, it appears that
i.e., whenAz,>Ar, (see Fig. 2 thenD,=1 because the many vortex tubes are not subjected to persistent straining,
covering with boxes of the 3D streamline is a serialwhich would severely limit the spatial regions wilth,>1.
covering—a covering where each béprovided its size is The object of the following Secs. Il and IV is to demon-
not too large covers only a portion obnecoil of the helical  strate that spiral-helical streamlines with well-defined nonin-
spiral and no morgsee Vassilicos and Hurj4] and the tegral Kolmogorov capacities do exist around small-scale
box-counting algorithm in Sec. ) vortex tubes in DNS low Reynolds number isotropic and

In fact, sincem=—1(8=0), A,=(Ar,)?+(Az,)? de- decaying turbulence. In fact, the analysis reported in Secs. Il
creases initially and then increases with increasingading and IV leads to the detection of two different types of
to an accumulation of length scales in a restricted region ostreamlines with well-defined nonintegral Komogorov ca-
space where, is sufficiently small. There, the streamlines pacitiesDy ; helical-spiral streamlines accumulating towards
have a Kolmogorov capacitp=Dypy;. If I is far inside @ central axis and streamlines with a helical and axial accu-
the vortex core (,<R), D=1, whereas if, is far outside ~mulation towards a limit circle.
the vortex core (;>R), thenD>1 provided that the box

counting is limited to the region where the displacemert in IIl. THE FOUR DATA SETS
after one turn of the spiral is smaller than the displacement in INTERPOLATION TECHNIQUES
r (i.e., Azn<Arn). In this region AND THE METHOD l
; OF SYSTEMATIC FRACTAL ANALYSIS
0
Zp< , (212 A. The four data set
8m?r2/Re,R2+ 1+ \Br2ro/Re, RZ+ 1 @ Toulr data sets

We use the numerically generated data set of isotropic
and the 3D spiral streamline may be covered by the samenforced decaying turbulence which Yeung and Brasseur
number of boxes as its projection; herdg=Dyp,;. Note  [11] obtained by DNS on a 13gyrid with Rg =19, and three
that inequality(2.12) implies that the probability of finding a other data sets at nearly the same decaying state of) 128
section of streamline wittDyx =Dy outside the vortex 256", and 512 grids, respectively, with Re=21. Yeung and
core decreases with decreasing,R#/e stress the conclu- Brasseuf11] allowed an initial Gaussian velocity field with
sion that the persistent straining action severely limits thea k? small wave-number and & °° large wave-number
region around the vortex wheig,>1. energy-spectrum to evolve by the unforced Navier-Stokes

For the Burgers vortex to display spiral streamlines withequations until it reached a non-Gaussian equilibrium state
Dkprop> 1, and thereforeD>1 in a restricted region of of power-law decay. The first velocity field analyzed in this
space, Rgshould be larger than at least 200 so that streampaper is the one that Yeung and Brasslir] used as the
lines have at least two turns outside the vortex core—frominitial condition in their subsequent forcing calculations. The
(2.10; two turns is the minimal requirement f@, to be  second 128 velocity field analyzed in this paper was ob-
measurablgVassilicos and Hun4]). For such values of Re  tained from the same initial realization of a Gaussian veloc-
to exist in DNS'’s requires a much larger Reynolds numbeity field with the same initial energy spectrum and the same
than what we analyze in this paper. Jmaget al.[7] calcu-  parameter setting. We refer to the first velocity field by F128
lated typical values of Reby fitting a Gaussian distribution and to the second by S128. These two velocity fields are
of vorticity to the vortex tubes in isotropic simulations of obtained at slightly different evolution times, resulting in a
turbulence(as is the case of Burgers vortex tupeshey small difference in Reynolds number. In both data sets the
found that Re grows with Rg, and for a forced turbulence turbulence has evolved several eddy turnover times to a state
of Rg,=35.8, they found an average value of Regual to  of power-law decay and the Kolmogorov-scaled high wave-
97, with a standard deviation of about 4fetermined from number energy spectrum has collapsed to a single curve. The
an inspection of Fig. 10 in Jinmezet al.[7]. The maximum initial artificial Kolmogorov —3 spectrum progressively dis-
values of Re that Jimeez et al. [7] observe in their low appears during these simulations.

Reynolds number forced turbulence lie between 150 and For the F128 and S128 data sets, the grid spading
200. We conclude, therefore, that if the vortices in their~1.87n [where »=(1/e)** and e is the mean dissipation rate
simulations were Burgers vortices, the probability of detect-at those times, and xk,,,~m wherek,, ., is the simulation’s
ing streamlines wittD>1 would be very small. largest excited wave numbeand the longitudinal Taylor
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TABLE I. Characteristics of the 4 DNS data sets. linear and TS13 interpolation schemesldoate accumulat-
ing streamlines, while TS13 and the full Fourier summation
F128 5128 5256 S512  were used to accurately track streamlines in these regions.
AXI 7~ 18 18 0.92 046 lgglsiisccurate streamlines were then subjected to fractal
Konao7~ 1.63 161 3.20 6.38 ySIS.

Yeung and Popd12] compared the accuracies of ten

Rffw 12 2; 2918 f;4 interpolation schemes, including the linear and TS13
MAx= ' ‘ schemes, on a 32velocity field grid data expressed as a
Lo/ Ax~ 11 124 25 49.5 finite Fourier series with no time dependeri@®zen field,

random / phases, and/ an energy spectrum
. N E(k) =k >"exp[—3.675k7)*?. They computed errors in
mlcwroscale)\_~5Ax. The longitudinal integral length scgle fluid particle displacement, and found that TS13 is very ac-
Lp: 1Ax ‘in the F128 data set with Rel9, and ¢ are performing better than all other schemes except
LPN_lZ'MX in the 5128 data set with Re21. More Infor- - splines and full spectral interpolation. Specifically, for TS13
mation about these data sets can be found in Yeung aqﬂpthe case where the largest wave numiegy, is such that
Brassgu{ll]. . . max7=1, they report an average particle displacement error
As indicated in Table |, the two remaining data sets, S25,e'many particles that remains smaller than 1% for nearly
and S512, are identical in parameter setting, initial condltW0 integral time scales. For TS13 in the case where
tions, Reynolds number, and evolution time to S128 but a =4, they report an average particle displacement error

better resolved because they have been obtained from ﬂfﬁ]t remains below 0.01% over more than one integral time
unforced evolution of the Navier-Stokes equations on 256scale for a variety of Courant numbers below 0.3. Further-
and 5_13 grids, respectively. V!herea_snaxn 1.61 in S128, more, they do not observe an increase in accuracy as the
Kimax7=3.20 In S256 anky,;,=6.38 in S512. In S25&X ¢4 ;rant number decreases, but they do observe a fairly dra-

~0.927, N\~9.8Ax, and L,~25A%, and in S512,Ax L : :
’ matic increase in accuracy & increases.
~0.467, \~19.4AX, and L ~49 BAx. The analyses were Y Sda?

Yeung and Popdg12] find that a suitable criterion for
carried out in 128 subdomams of the S256 and S512 datagood TS13 particle tracking accuracyKs,z=1. As indi-

sets, corresponding tpand; of the computational domains, cated in Table I, in F128 and S128,,7~1.6, whereas

respectively. Kmax?7 IS approximately 3.2 in S256 and 6.38 in S512. Bal-
achandar and Maxejl 3] demonstrate on specific examples
B. Interpolation of velocities between nodes including TS13 that the error with which an interpolation

and the calculation of streamlines scheme determines the Fourier coefficients of a velocity field

To calculate instantaneous streamlines, we solve increases with wave number. Therefore interpolation errors

are smaller for velocity fields with steeper energy spectra.
X Here the energy spectra decrease at a rate much faster than
FTi u(x(t)) (3.2 K53
As an additional test, we computed streamlines around
d simulated Burgers vortices with characteristics similar to the
vortices found in the unforced DNS turbulence of Yeung and
Brasseuff11], and found no significant error.

numerically, whereu(x) is the frozen Eulerian velocity fiel
at a pointx. For any given initial positiorx,, the trajectory
X(t,xg) of a fluid element in this frozen velocity field is a
streamline and a solution ¢8.1).

We used a standard fourth-order Runge-Kutta routine to ‘
solve (3.1) with a fictitious time stepst=T/200, whereT¢ of turbulent streamlines
is the Eulerian integral time scale, and the Courant number (i) Because we search for streamlines with spiral or ac-
Stupa/Ax=0.2, which is significantly less than (L, iS  cumulating structure, we require an algorithm which can first
the maximum value of the three velocity components withindetect streamline sections with persistently strong curvature
the data set We tried smaller values aft in the first set of (what we call “persistence of strong curvatuje”The
streamline sections that were extracted for “fractal” analysisstreamline sections that we seek to discard are “meander-
(see Sec. lll and no appreciable difference was found foring” or nearly straight; their curvature changes orientation

C. Systematic “fractal” analysis

a given velocity interpolation scheme. “too often” along the streamline’s arc length, or is simply
We used two velocity interpolation schemes, a lineartoo gentle.
second-order accurat@ grid spacing eight-point scheme, This qualitative requirement for persistent curvature is

and the third-order Taylor series 13-point scheffi813 of  quantified as follows: we first calculate the scalar product of
Yeung and Popgl2]. These were tested against exact specthe normain to a streamline at two consecutive values of

tral interpolation obtained by summing the full Fourier seriesthe numerical solution of3.1), i.e., n(t) -n(t+ 6t) for all t,

at points in continuous space between grid no@@blS data and plot this product against the arc lengttias shown in

are generated on a periodic domain and are represented byFay. 3 by the dotted line If the streamlines were in a 2D
finite Fourier serie$.The cost of using the full spectral in- plane,n(t)-n(t+ 6t) would change value abruptly from 1 to
terpolation for the simulation of a large number of stream-—1 and back to 1 again at those poist®n the streamline
lines is unacceptably large; hence the use of numericallwhere the curvature changes si@nflection points. In 3D
cheaper interpolation schemes, the accuracy of which we tespace, more complex changes in curvature can occur and we
against the exact interpolatioisee Sec. IY. We used the define a somewhat arbitrary threshold to identify spikes in
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FIG. 3. CurvatureC(s) (solid line) and scalar produati(t)-n(t
+ 6t) (dotted ling against arc lengtls for one streamline, where
n(t) is the unit normal vector to the streamline at pseudotime

n(t)-n(t+ 6t). Where the value of(t)-n(t+ ét) is below
that threshold the algorithm automatically decides that there
iS no “curvature persistence” on the respective segment of
streamline. Abrupt jumps im(t)-n(t+ 6t) can be seen in : : , , ‘
Fig. 3. (b) S0 Swm A A 5

The identification of jumps im(t)-n(t+ ét) is not suffi-
cient for a criterion for “persistence dtrong curvature.” FIG. 4. (a) The box-counting ranges 1—4 shown on a log-log
We also need a criterion for consistently strong curvature. Toyot of N(5) against box sizes. (b) The box-counting ranges 1—4
quantify strong curvature, the algorithm first identifies ashown on a log-log plot 0N(5) against box sizé. The maximum
range of arc lengths wheren(t) -n(t+ ét) is consistently  vajue of SN(5) beforeA on this plot corresponds . A is chosen
larger than a certain value.g., in Fig. 3,n(t)-n(t+6t) is  petween ranges 2 and 3.
larger than 0.7 frons=27 to 67, and then calculates the
integral [ C(s)ds of the streamline curvatur€(s) over that  practical application of box counting, as illustrated in Fig. 4.
range of arc lengths. If [C(s)ds is larger than a certain Range 1: Because numerically computed streamlines are
value, then, on average, the curvature remains large over the fact a sequence of points, #fis so small that the points of
relevant range of arc lengths, and the algorithm isolates thahe streamline are resolved, thiis) is a constant equal to
portion of streamline as having a persistence of strong curthe number of points that make up the streamline.
vature[e.g., in Fig. 3fC(s)ds s larger than 2 from s=27 Range 2: Asé increases, a range of length scalgss
to 67, whereC(s) is given by the solid ling The box- reached where the box covering does not resolve the indi-
counting algorithm to determine the Kolmogorov capacity isvidual points, but sees a smooth one-dimensional object. In
then applied to the streamline segments identified by the athat rangeN(8)~ 6.
gorithm as having persistently strong curvature. Range 3: Finally, whe@ is large enough to compare with

After some experimentation, we chose different thresholdhe extent of the streamline itself, th&( ) is again con-
values for the linear and TS13 interpolation schemes. Fostant and of order 1.
linear interpolation, the thresholds waré) -n(t+ 6t)=0.95 If the streamline has a nonintegral Kolmogorov capacity
andfC(s)ds=3m. TS13 interpolation with the same thresh- D, then afourth (“fractal” ) range of length scales exists
old of 0.95 missed many persistently strongly curved streambetween ranges 2 and 3 in Fig. 4, wh&tes) ~ 6 Pk with
lines, either completely or only partially. Consequently, forD,>1. We seek an algorithm that can detect this fractal
TS13 we chose(t) -n(t+6t)=0.7 andf C(s)ds=3m. Note  range, if it exists, determine its extent, and then meaBye
that in certain circumstancefC(s)ds may be interpreted as with suitable confidence. We now describe such an algo-
a total angle. rithm.

This algorithm is still imperfect and may miss some spiral  |n general,
streamlines, but as we report in Sec. IV, the majority of the
streamline sections that it did isolate had a well-defined spi- IN[N(8)/Npmin]
ral or accumulating character. Dk(0)=~ IN(S/ Spiry) .2

(i) The box-counting algorithm is a central tool of fractal
analysis. The approach is to cover a streamline with boxes affhereN i, =N(Snin) and i, is the lower bound of the frac-
size § and to count the numbeN(5) of boxes that are tal range. If a fractal range exists with a well-defined value of
needed for the coveringee Mandelbrdtl4]). In practice, at Dy, thenDg( ) is constanfindependent o) in that fractal
least three different ranges of length scales must exist in theange, and(8)=Dy .
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We first choose a scald which, on phenomenological
grounds, should be larger thaf,,, but not in range 3. To
identify range 4 and specifically fing,;,, the algorithm first
looks for the maximum oféN(6) in the range of length
scales bounded b from above[see Fig. 4b)]. Let us call
& the value of§ where this maximum occurs. The role of the
upper boundA is to ensure thag, is within range 2 where
N(8)~ 61, and not within range 4. Thu&=<s,.

Then, for successive values of & betweend, and A
(A>&), the algorithm calculates the average valug(5')
and the variance?(8') of

IN[N(8)/N(5")]
In(sld)

D(8,8")= (3.3 @

over a range of length scalesthat is bounded by’ from
below, and by the Taylor microscalefrom above. The Tay-

lor microscale may be roughly interpreted as being an aver-
age radius of the turbulent streamlin@ince A2oc(U?/{w?)).
Whereas in this work the upper bound to range 4 is fixed at
\, in forthcoming work we shall vary the upper bound. Re-
sults presented in Sec. IV concerning extremely fine features
at the very smaller scales of high vorticity regions indicate
that this modification may be necessary. However, it is not
necessary for the study of most spiral streamlines in the flow,
as shown by the results in Sec. IV.

If a fractal range exists witD > 1, 0X(8') decreases with
increasingd’ > &, until &' reaches the upper bound of range 2
where &' =i, (see Fig. 4 Then, ass' grows beyondy,,
(&) increases because a decreasing sample of values of

Dy -0

0 0.2 0.3 0.4 0.5 0.6 0.7 0.9 1

(b)

0.1 0.8

§

D(6,8") is used to calculates®(8'), and the function
Dk(5,8") becomes noisier a$ approaches range ahe
lower boundd,,,i, of the fractal range is the value @& where
d?(8') is minimized. The measured value gf B Dy(6y;r)-

To illustrate the application of this algorithm, consider the
example of the plane spiral ¢)~ ¢~ Y2 [Fig. 5a)] which

FIG. 5. (a) Plane spirat ~ ¢~ %° generated on the computer for
the purpose of testing our box-counting algorithm. The location of a
point on the spiral is given by the radial coordinatand the angle
¢=2mn., wheren, is a real number between 0 and infinity that
represents the number of turns of the spiflal.Result of box count-
ing on the plane spiral of Fig.(8). Kolmogorov capacityD ()

was generated on the computeis the distance to the center Versus box scales. The algorithm measuredy=1.3 with
of the spiral and the anglé is given by 2rn, wheren, is a =0.007 and accurately locatef},, between 0.1 and 0.2.
real number between 0 and infinity representing a number of
turns. The Kolmogorov capacity of this spirallg =3 (see
Vassilicos and Hunf4]). Figure %b) shows the outcome of _
the box-counting algorithm on that spiral where the upper A. Analysis of 128 data
bound scale is set equal to 1, the size of the grid spacing in Most studies of small-scale turbulence structure focus on
Fig. 5a). The algorithm identifieds,,;,=0.127 to be the subjective and visual descriptions of flow structure without
minimum scale of the fractal scaling range 4 where it meaguantified measures of flow topology and geometry and no
suredD = 1.3 with accuracy?=0.007. The slight underes- statistics of such measures either. The Kolmogorov capacity
timation of Dy is caused by the left-hand side of tBg(6) is such a measur® is a direct measure of nontrivial ac-
curve in Fig. 8b), and can be corrected. We tested our algo-cumulations of length scales on a streamline, providing a
rithm on a variety of examples of spirals, and found that itlocal nonstatistical quantification of a geometrical cascade of
works well, although always slightly underestimating thelength scales of motion.
value ofDy . To acquire statistics of different such local “cascades” of
We remedy this underestimation by generating the mirrotength scales within the turbulence, we calculated approxi-
image of the curv® () with respect to a horizontal mirror mately 4000 streamlines on each 128id of the F128 and
line in the graph D¢, 6), and then summing the original and S128 data sets, beginning from points spaced uniformly eight
mirror curves together. By varying the vertical coordinate ofgrid nodes apart from one another. These streamlines were
the mirror line, we find the location of that mirror line that calculated by solving(3.1) in the instantaneous velocity
minimizes the standard deviation of ttem of the two  field, up to pseudotimé= 10Tz, whereTg is the Eulerian
curves. That vertical coordinate is the valueldf that we integral time scale of the turbulence.
seek, and in the case of Figiah, for example, this improved After integration of all 4000 streamlines in both data sets,
box-counting algorithm yields B=1.33. we searched for “persistence of strong curvature” using the

IV. DESCRIPTION OF THE PROCEDURE
AND RESULTS
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FIG. 6. Examples of box-counting results for two spiral stream-
lines in the DNS turbulence. The Taylor microscate5. The Kol-
mogorov scalep~0.55. BothDy and &, are clearly obtained by
the algorithm.(a) Dx~1.05 anddy,;,~0.75~1.47, (b) Dx~1.25 (b)
and 8i,~0.2~0.367.

FIG. 7. (a) TS13 interpolation of a spiral streamline in the DNS

algorithm described in the preceding section. 783 streamlinf/rbulencethe faintest of the two curvesompared with interpo-

sections in F128 and 795 streamline sections in S128 OI,]Iétlon by full Fourier summation of the same streamline. For the

out of five computed streamlines, had persistently strong cur->13 interpolation, we measurel~1.1. (b) Another spiral
vature. This is a large number considering that only onels.
streamline was computed in each realization of the IargeI
scales, i.e., the initial points of the computed streamlines
were nearly one integral length scdlg apart from each counting scaling is slightly smaller thapfor one streamline
other(L,~11Ax in F128 and_,~12.4Ax in S128. Usinga  and slightly larger for the other. There is also a variation of
high-quality graphics workstation, we visualized all stream-Dy from streamline to streamline. In Fig(, for example,
line sections with persistent strong curvature, and of thes®~1.05, and in Fig. @) D~1.25. Figures @) and Gb)
386 in F128 and 380 in S128 clearly had an accumulatingvere not chosen because they are our best results. The good
geometry and 172 in F128 and 180 in S128 laydifferent  quality of the self-similar scalings detected on these stream-
vortex tubes. The statistics of Kolmogorov capacities oflines in a range of length scales from abaputo \ is typical
streamlines are obtained from this subset of 172 and 186f the 783 and 795 streamline sections that were singled out
independent streamline sections. by the algorithm for the detection of persistence of strong
Figure 6 shows two examples of box-counting results forcurvature.
two of the 172 and 180 streamlines just mentioned. In both We tested the accuracy of TS13 interpolation against the
cases a very well-defined scaling is found over a range ofull Fourier summatior(*exact” interpolation for 15 of the
scales from near the Kolmogorov scajeo the Taylor mi- 783 streamline sections that form our conditional statistical
croscaler~5Ax. The box-counting algorithm works well sample from the F128 data s€The prohibitively high com-
and provides bottD, and &, accurately. Note that the putational cost involved prevented the use of Fourier sum-
smallest length scalé,,, of the range of self-similar box- mation on all streamline segmentsigure 7 shows two typi-

treamline wheré®~1.33. Here the TS13 and Fourier interpola-
ons are identical.
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cal comparisons. In Fig.(@ the TS13 interpolation diverges 2
after some time from the “exact” interpolation obtained by
full Fourier summation. In Fig. (b) the agreement is excel-
lent over the entire streamline section. The Kolmogorov ca-
pacity D¢ of the streamline section in Fig(ly) is apprecia-

200

bly larger than theD ¢ of the streamline section in Fig(a). 15
This is typical of what we observed in the 15 tests; interpo-
lation errors are larger when tli¥, is smaller. Furthermore, 1ol

the D¢ measured for streamlines using TS13 interpolation
usually underestimatdhe true value oDy . This is easily
understood; interpolation errors come from missing steep
bends, as in Fig.(a) where the TS13 interpolatidihe faint- (”ﬂﬂ rﬂﬂﬂw Hm[h ﬂ7
est curve on the plptmisses the curvature of the “exact” o] L ol LMD AL
interpolation, and therefore produces a spiral or accumulat- (@)
ing pattern which is less space filling than it should be, thus
leading to an underestimation &y (see Vassilicos and
Hunt [4] for a discussion of the “space fillingness” of spi-
rals). The bends of streamlines are generally steeper the
closer the value oD is to 1. Consequently, if a measure of
Dy greater than 1 using TS13 interpolation is in error, the
error is an underestimate Dy and Dy is indeed greater
than 1. The accuracy of measurigg improves with increas-
ing Dx>1 and the interpolation seems to increasingly un-
derestimat® asD— 1. Note from Figs. %@ and 7b) that
a surprisingly small number of turns is needed to detect the
Kolmogorov capacities.

In Fig. 8 we plot two histograms of measurBg, for the
172 and 180 independent streamline sections that have a per-
sistence of strong curvature in F128 and S128, respectively. | (ﬂlﬂw” H bk hoo &
Of these streamline sections, 39% in F128 and 47% in S128 1 1es 11 115 12 125 13 135 14 145 15
haveD > 1, specificallyD ¢ between 1 and 1.5 in F128 and (b) Dy
between 1 and 1.6 in S128able Il). Figure 9 shows an
example of a scatter plot @y versus the minimum length FIG. 8. Histograms oDy including onlyDy>1 (a) for the 172
scaled,,, in the range where the correspondidg are well ~ independent streamline sections detected by the algorithm for per-
defined. Note the concentration of valuessgf, aroundAx S|stenc<_e of stror)g curvature in F128 gbgfor t_he 180 mdept_endent
and aroundAx/4. A typical example of a scatter plot & streamline sections dete_cted by the a_llgor_lthm for persistence of
versuso? is given in Fig. 10, where? is the variance of ;trong .curvature in S_126‘|ndependent” implies that each stream-
Dy (5) aboutDy (see Sec. Il €. In many caseéoften when  n€ coils around a different vortex tube
Dy is large Dy is well defined(i.e., o is very small com-
pared toDy) from \ to &y, In particular,Dy—o>1 in
approximately one-fifth of the cases considef8@ out of
172 in F128 and 34 out of 180 in S128hese results are
obtained from simulations wherge~5Ax and Ax=1.87,
and the values o8, cluster around\x and Ax/4.

30
25H ]

204

curvature, it turned out that of these, respectively, 285 and
130 clearly have an accumulating geometry, and 98 and 31
lie on different vortex tubes in the S256 and S512 high-
resolution velocity fields. Of these independent streamlines,
34% have @ strictly larger than 1 and not larger than 1.47
in S256 and 24% have B strictly larger than 1 and not
. larger than 1.26 in S512.
B. Analysis of 256 and 512" data It must be stressed that both S256 and S512 are highly

To show that the identification of a significant number of resolvedsubsetsof the original S128 velocity field, corre-
streamlines wittD>1 and that the values af,,,, obtained  sponding to a 6%4and a 32 corner of S1283} and & of the
from the 128 data are not artifacts of the finite grid resolu- computational domainWe checked that, among the stream-
tion, we repeated the same calculations with the data setmes calculated only in those corners of S128 that corre-
S256 and S512, wherg/9.8~Ax~0.92yp and\/19.4~Ax  spond to S256 and S512, the percentages of independent
~0.46n, respectively. We calculated approximately 2000streamlines with an accumulating geometry that ha.a
and 1000 streamlines, respectively, on the*1@&ds of the  strictly larger than 1 are 30% and 18%, respectively, which
S256 and S512 data sets by solviBdl) in the instantaneous compare well with(and are in fact smaller thatthe percent-
velocity field up to pseudotimé=10Tz. The number of ages obtained from S256 and S5Table Il). Furthermore,
streamline sections found with persistently strong curvatur¢he largest values dd, measured in the corners of S128 that
is 560 in S256 and 173 in S512, that is, respectively, one outorrespond to S256 and S512 are 1.48 and 1.26, respectively.
of 3.5 and one out of 5.8 computed streamlines, which comHence the percentages of independent accumulating stream-
pares reasonably well with the results from F128 and S128ines with Dx>1 increase and the maximum valuesnf
Visualizing all streamline sections with persistently strongare unchanged when the resolution is improved.
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FIG. 9. Scatter plot 0Dy againsts,,, for the 172 independent FIG. 10. Scatter plot oDy againsts?, the variance oD (4)
streamline sections extracted from F128. The units on the abscisstboutD , for the 180 independent streamline sections extracted
are such thatAx=1=1.85». The apparent sharp cutoff in data from S128.
points at about 0.2 is an artifact of having artificially restricted the
search forédy,, to values larger than approximately §.3n the  trarily placed points uniformly spaced over subregions of the
algorithm described in Sec. IIl @i). data sets. The many visualizations that were made of the
. : spiral trajectories relative to the local enstrophy field

Scatter plots ofDy Versus gy, for the high-resolution — onq)y suggest that the streamlines vith>1 are prima-
gt?itliir?gettsh:tztii ?/g?uggg gl\z:elu;etzlr“;srosllﬂgazg ta%g'slzllg It Iﬁly associated with the more intense vortex tube_z structures.
all data sets F128, S128, $256, and S512 independently §f€ SXPect, therefore, that a larger number of independent
the grid resolution. In Fig. 11 we plot histogramsogfshow- S reamlmes with perS|stentIy strong curvature WOUk.j _be
ing that the Kolmogorov capacities are increasingly well defound if the extraction of streamllnes were to_b_egm within
fined with increasing resolutiofic? decreases on average those data points with Fhe. h'g.hESt re_Iat|ve vorticity. We a!so

want to check that a similar if not higher percentage of in-

from S128 to S256 to S5]2 . . ; .
From visualizations such as Fig. 12 and 13, we ObserV‘glependent persistently curved streamlines from this specially
; ' chosen set havD (> 1.

two very different types of accumulation of length scales on We int ted st i beainning f Il points in th
the streamlines that have a persistence of strong curvature. € integrated streamiines beginning from aff points In the
28 data set with the highest relative value of enstrophy

Fig. 12 the streamlines accumulate towards a central axis a : :
the accumulation is primarily radial, whereas in Fig. 13 theSUCh that these points covered 1% of the entire data set.

streamlines accumulate towards a limit circle and the aCCLf‘Ithoth Jimeezet al. [7] described these points as defin-

mulation of length scales islongthe vortex tube. The limit ing the most intense vortex tupéSworms . ), not all the.
circle lies in a region of the vortex tube where the magnitudeChoser.‘ points are within well-defined tubelike concentrations
of the vorticity attains a local minimur(see Fig. 18 These of vorticity, and we therefore expect only a fraction to dis-

two types of streamline accumulating topology appear to b lay tﬁe:s(ljsteg_t clurvature_. tFutrtherm?re, of thoselz stream-
quite generic in the small-scale turbulence field that we have"¢> hat do dispiay persisient curvature, several may sur-

studied. and cannot be both accounted for in terms of théound the same vortex tube; thus only a fraction of the total

simple straining fields of the Burgers and the Lundgren vor-W'”t de][‘mt;a |n|deper1[dent streamlines surrounding different
tices. Furthermore, as we discussed in Sec. Il B, the ver)\/orv\?x _ute e(;:rr&en S telv 23000 st i h
existence of persistently curved streamlines with well- € Integrated approximately streamiines where

: the enstrophyw? is larger than 6.3 times the rms of the en-
definedD¢>1 at the low Reynolds numbers of the present . . . .
simulations is evidence that the vortex tubes where thes trophy throughout the field of the simulation. The totality of

streamlines reside are not Burgers vortices. these inten_se vortex tubeg is _shown in. Fig. 14. The stream-
lines were integrated for five integral time scalBs using
the TS13 interpolation scheme. The algorithm for the detec-
tion of persistence of strong curvature detected such a
In the results of Secs. IV A and IV B, accumulating ge- streamline section in approximately one of every four
ometry was extracted from streamlines initiated from arbi-streamlines integrated. Of these, 1425 were indeperident

C. Streamlines of the most intense vortices

TABLE 1. Highlights of analyses of streamline geometry.

F128 S128 S128 S256 S256 S512 F128

Portion of box extracted all all 1/8 1/8 1/64 1/64 all

No. of streamlines extracted 4000 4000 500 2000 62 1000 22987
% independent streamlineB, >1 39% 47% 30% 34% 18% 24% 42%
Maximum D g 15 1.6 1.48 1.47 1.26 1.26 1.68
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FIG. 11. Histograms ot” (a) for the 180 in-

12r i ] dependent streamlines extracted from S1@8,
10} | . for the 98 independent streamlines extracted from
il S256,(c) and for the 31 independent streamlines

5 extracted from S512. These independent stream-
6 ] lines have been identified first by their persis-
oL | tently strong curvature.
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on different vortex tubespersistently curved streamlines. Il, the nonintegral values dDy that we observe on spiral-
This number is much higher than the number of streamline$elical streamlines may reflect localized near-singular flow
extracted using an arbitrary uniform placement of initial structures in the regions surrounded by these streamlines.
points. These local near singularities may extend over a significantly
Figure 15 is a histogram of the valuesdf for the 1425  wjide range of scales bounded from below bipeal viscous

independent streamline sections in the most intense vortexytoff scale that is a function of the local flow structure, and
tubes (those which occupy only 1% of the total domRin may therefore differ from one near-singular vortex tube to
Each one of these 1425 nonoverlapping streamlines was chgnother. In the following subsection we study whether the

senat randomﬁmong approximately one to five SFre?mlresvorticity profile across vortex tubes can be approximated by
detecte;)d on t ?ame Ivor_tt(;x tlf[beg\/? US.Gd prem_segt € a well-resolved Gaussian at the resolution of this paper’s
same box-counting algorithm to determifg as in Sec. DNS turbulence, in which case the width of this Gaussian

IVA, in particular with the upper bound cutoff sqale stil could provide a measure of the local viscous cutoff scale of
equal to\. The values oDy below 1 suggest that is too the vortex tube

large an upper bound for the self-similar range of the geom-
etry of the streamlines at these extremely small scales of - ,

motion. Clearly though, a large number of streamlines were D. The vorticity profile across the vortex tubes

found with accumulating geometry ardl,>1, specifically As discussed in Sec. I, the existence of streamlines with
42% of the 1425, which is a similar percentage to the onéd>1 in such a low Reynolds number turbulence indicates
found with randomly placed streamlines in the F128 andhat these vortex tubes are not Burgers vortex tubes. The
S128 data sets. In fact, more accumulating streamlines witanalysis presented in this subsection shows that, even in the
Dy>1 were extracted than what is shown in Fig. 15, sincehighly resolved S512 turbulent velocity field, the vorticity
we chose a representative streamline for each vortex tube ptofile across the width of some of the vortex tubes is not a
random among an average of three streamlines per vortexell-resolved Gaussiafiby which we mean that it is not well
tube rather than pick out the streamline with the largest andesolved, or non-Gaussian, or bbtfhis analysis is based
best defined . The streamlines witlD,>1 are well de- on the spatial correlation of the enstropha$=w- @ with the
fined over a range of length scales extending fiomo &,,,,.  square of the viscous fordé=f.f (f=—1pV X w) in the vor-

We also found that, at these very small scalgs, is often  tex tubes around which streamlines with persistent curvature
approximately equal ta/2. Following the discussion in Sec. are identified. This correlation is
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We calculate the averadge of C over many vortex tubes
extracted in the manner just described, and to probe increas-
ingly small scales of vortex motion we calculd@eover in-
creasingly small percentages of the total volume in these
vortex tubes. We do this by averaging over those portions of
individual extracted vortex tubes wher&/w?,,= wi/w? .y
for increasing values of the threshold?) relative to the
local maximum enstrophw?,,, in each vortex tube. In this
way, we obtain curve€(wi/ws ) as in Fig. 17.

Due to viscous stresses deep within the vortex core, we
may expect the vorticity to reach a constant finite value at the
center of the vortex tubes, indicating solid body rotation at
the center, as in the case of the Burgers voffég. 16a)].
Close to the center the viscous force may therefore decrease
to 0. If the vortices are sufficiently well resolved and if local
cores of solid body rotation exist and extend over a grid size
Ax or more, thenC should be negative for large enough
values ofw?/w?,,. This is becausé® should be small in the
innermost viscous core whewe? is largest, whereas at the
edge of the vortex core, where vorticity gradients are highest,
the viscous force should reach a maxim{see example of
the Burgers vortex, Fig. 18)]. Hence, as the thresholef, is
increased an€ is calculated over deeper parts of the inner
cores of the vortices and over a smaller number of increas-
ingly strong vorticesC should tend to-1. This is indeed the
case for the Burgers vortex where, as shown in Figb) &
reaches—0.9 whenw§/w?,,~0.2. Figure 16b) is an analyti-
cal result derived froni2.7) and is purely a consequence of
the Gaussian vorticity profile of the Burgers vortex.

What we observe in the simulated turbulence is very dif-
ferent from Fig. 16b). Figure 17a) shows that in simulation
F128 C remains positive over all values @2/w?2,,, and
Fig. 17b) shows that in simulation S128 decreases slowly
to small negative values that are strictly greater th@nl. In
all the plots ofC versusw?/w? . (Fig. 17, the part of the
curve wherewi/w?,=0.7 is insignificant because fewer
» than eight grid points are sampled above this threstgiid
(b) points are separated only by a distarice).

To sample more deeply within the vortex tubes, we repeat

FIG. 12. From the DNS isotropic turbulence with,Re1. (a)  the calculation of the curveC(wi/wzq) using the high-
Projection of vortex tube streamlines on a plane transversal to theesolution data sets S25@vhere Ax~0.92p) and S512
vortex tube in the small-scale turbulence). Projection of the same  (where Ax~0.465). Whereas Fig. 1(b) is obtained from
streamlines_ on the azimuthal plane' of the vortex tube. The Kolmogyortex tubes in the entire volume of S128, Fig.(d7and
orov capacitieDy of these streamlines vary between 1.2 and 1.3. 17(d) are obtained from vortex tubes, respectively% iof the

total volume of S256 and; of the total volume of S512.
AP (0 (0?)) This is done because of computer limitations so that we al-
CA{(FP= () (0 — (0?)) 22 4D \ways use a 17Bgrid when calculating correlations. Hence

the correlation in S128 is calculated over 180 extracted vor-
where the bracket) imply conditional averages over grid tex tubes, the correlation in S256 over 98 extracted vortex

boxes visited by streamline segments with persistent curvdubes and the correlation in S512 over 31 extracted vortex
ture and over thosaeighboringgrid boxes withlarger val- ~ tubes(see Secs. IVA and IV B

ues of enstrophy. No more grid boxes are included in the Because the sample sizes are different among the three
conditional average once no other neighboring grid boxesglata sets and are not large, especially for the S512 data set,
can be found with larger enstrophy. In this way local vol-the correlation plots in Figs. 18)-17(d) do not overlap.
umes of concentrated enstrophy equal to and larger than tiéevertheless, these correlations do agree in one surprising
enstrophy along a persistently curved streamline section ar@nd important respect: the spatial correlat@rbetween the
extracted from the data set for analysis. The averagésIn  viscous force and the enstrophy in the extracted vortex tubes
are carried out over these individual volumes of high enstrodoes not fall below-0.1 for all the threshold®3/w?,,, con-

phy (the vortex tubeswhere the streamline sections coil.  sidered, in particulamw?/w?,,, between 0 and 0.3. This ob-

C
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(b)

()

FIG. 13. A number of axially accumulating streamlines with~ 1.33 around a small-scale vortex tube in the DNS isotropic turbulence
with Re,~19. The vorticity vectors are directed along the axis around which the streamlines coil, and point from left to right. The axially
accumulating streamlines are plotted with isoenstrophy surfaceswfitiyual to(a) 15 rms,(b) 12 rms,(c) 10 rms, andd) 8 rms(the rms
of ? is over the entire 1Z%low simulation. Note that the streamlines approach limit circles at the region of minimum enstrophy along the
axis.

servation is independent of whether the grid spacing is V. CONCLUSIONS

roughly double, equal, or half the Kolmogorov length scale Self-similar near-singular flow structure can be advanta-

. These observations are significant because awell-resolv&%eOUSIy id_entififed and characterized by the self-sim_ilgrity of
Gaussian vorticity profile across the azimuthal plane of thdt Streamlines in real space. We prove that the vorticity field
vortex (as assumed, for example, by Jimeget al.[7]), has, in an aX|sym_metr|c fl_ow where spiral-helical s_trear_nllnes
from Fig. 16b), a correlation between the enstrophy and thehave well-defined nonintegral Kolmogorov capacities is nec-
square of the viscous force that is below0.1 for all es;arlly smgulgr at the axis of symmetry, and find spiral-
Wi w2,,,=0.05. Figure 17, wher€> — 0.1 for wi/w? . be- helical streamlines around small-scale vortex tubes of low
tween 0.0 and 0.3, is therefore inconsistent with a well-Reynolds number isotropic and decaying DNS turbulence
resolved Gaussian spatial distribution of vorticity across théhat have nontrivial scaling properties with well-defined non-
extracted vortex tubes. Furthermore, if we anticipate the exintegral Kolmogorov capacities over a fairly long range of
istence of a Gaussian spatial distribution of vorticity verylength scales extending from around the Kolmogorov length
deep inside the core of the vortex where effects of frictionscale to the Taylor microscale. Further studies over a range
dominate, we can then conclude that the flow structure in thef Reynolds numbers are needed to establish whether the
vortex tubes extracted by our extraction algorithm is not to-upper scale of the geometrical self-similar range of stream-
tally smoothed out by viscosity around scales of orger lines indeed scales with the Taylor microscale. Variations in

It is interesting to note that if we restrict the sample overReynolds number are also needed to establish the scaling of
which the average valug is calculated only to those vortex the streamline cutoff scale%,;,, and to verify the existence
tubes where we detect streamlines having strong persistenf two well-defined scales neay. By comparing the spatial
curvature and a well-defined nonintegfal , the curves correlation between enstrophy and the square of viscous
C(w2/w? ) remain qualitatively the same as in Fig. 17. force in DNS vortex tubes to that in vortex tubes with a
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aRe, /x|

/f. (viscous force)

@ (vorticity)

(@) R=(2v/a)” r

Corr(f2,w2)

FIG. 14. Enstrophy isosurfaces in the entire 328bulent flow
field (F128 at w?=6.3 rms. The vortex tubes shown in this figure
cover 1% of the simulation domain, corresponding to the definition
of “worms” in Jiménezet al. [7].

Gaussian radial distribution of vorticity we conclude that the . . . , . .
vorticity profile of some DNS vortex tubes is not a well- 0 o0z 0304 MO/i? 06 07 08 08
resolved Gaussian even when the DNS resolution is excep- e
tionally high by the standards of current simulatiaigsid _ i
; - FIG. 16. The Gaussian enstrophy profile of the Burgers vortex
size as small aAx~0.467). qit o) Schemati file of radial variati ¢
Some additional clues as to the internal structure of thesg © 'S consequence chematic profile of radial vanatons o
. . . _—enstrophy and the viscous force. For a Burgers vortex, the viscous
vortex tubes are obtained from the study of streamlines; w it volume— is the density of the i
find that the self-similar geometry of streamlines with persis-ome per unit volumd = -upV X (p is t e density of the uid
. . - has only one nonzero component which is azimuthig)=
tence of strong curvature in low Reynolds number isotropic (a?Re/8m)re-**. The viscous force is negligible dee
turbulence has an accumulating cascade of length scales ei’\ &/8m ' . glgioie. P
. . - . within the core and far from the vortex, and rises to a maximum at
ther towards a point on the axis of the vortespiral-helical 2ia
streamlines or towards a circle in axial regions of low vor- the outer edge of the vortex core, exactly R y2v/a. Al the
. . . o center of the vortex, where the vorticity is maximum and finite, the
ticity magnitude. Nonintegral Kolmogorov capacities are

found f ith f i lati find viscous force vanishes, indicating solid body rotation at the center.
ound for either type of streamline accumulation. Our fin "(b) Spatial correlatiorC, between the square of the viscous force

ings also suggest that a significant number of vortex tubes ig,4 enstrophy, againsi/w?,, for the Burgers vortex. Exact ana-

Iytic curve derived from(2.7) and the above equatiditself derived
from (2.7)].

200

o (( low Reynolds number isotropic turbulence are not Burgers
vortices.

The Reynolds number is too low in these simulations for
1201 . the energy spectrum of the small-scale turbulence to exhibit
100 i an asymptotic self-similar form. Yet, with the Kolmogorov
capacity of streamlines we are able to detect nontrivial self-
similar geometry in local regions in the flow, even when the
curved streamlines exhibit only a couple turns. This ability to

140+

80

601

4or 1 extract self-similar structure with minimal information
20} 1 shows the usefulness of the Kolmogorov capacity of the flow
0 ‘ : s geometry as a localized measure of self-similar scaling and
b2 04 06 08 ! 12 14 16 18 near-singular flow structure that does not require a large
D¢ range of length scales to detect self-similar flow topology.

We have shown that the Kolmogorov capacity of streamlines
FIG. 15. Histogram oD for the 1425 independent streamline can provide an effective measure of the internal near-singular
sections with persistence of strong curvature in the vortex tubes dgstructure of vortex tubes and can be used when the resolution
Fig. 15. and/or the Reynolds number are low.



54 SELF-SIMILAR SPIRAL FLOW STRUCTURE IN LQV . .. 483

0.6 r T T T T 4 T 0.15

0.1p

0.05F

o]
ol

-0.05

. L . L L L L 0.1 N .
O'10 0.1 02 03 04 0.5 0.6 0.7 08 09 1 0 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(a) wh [V (©) Wi Wmas

0.15

01r

0.05F

0.05

0.1F

-0.15+

021

0.1 02 03 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 03 04 0.5 0.6 0.7 0.8 0.9 1
(b) @i/ (d) Winfwhax

FIG. 17. Ensemble averaged spatial correlatoaf enstrophy with the square of the viscous force against enstrophy threshesd,..
The ensemble averaging includes only the vortex tubes where streamlines were detected with persistent ¢ardtR8e(b) S128,(c)
S256, andd) S512.
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APPENDIX: d
THE INVISCID LUNDGREN VORTEX: ar Q(r)<O0. (A2b)

A NEARLY AXISYMMETRIC

“COMPLEX"” SINGULARITY . . . . .
The circulation around a circle of radiug is

The Lundgren vortex is aasymptoticsolution of the 3D y(r)=2xr2Q(r), the ¢-averaged vorticity isf(r), and
Navier-Stokes equations as times. A particular case of (A2a) is simply Kelvin's theorem. The differential rotation
this vortex is a sum of 2D semi-infinite spiral vortex sheetsof the spiral vortex is represented W¥(r); it should be
that are subjected to differential rotation and persistent strainoted that the asymptotic solutidAl) is fully determined
in a plane aligned with the vorticitw. The basic ingredient whenQ(r) has been chosen under the constréiib).
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To obtain a full asymptotic solution, the vorticifpl) is +oo _
strained in the £,r) plane and many such strained spiral U(r,o,t)= 2 v (r,t)en? (AB)
vortex sheets are added together with the same center of the n=-=
spiral and the same external strain. Finally one replaces th@ne can check that whem 0
timet by a “strained time”T(t) (see Lundgren2,3]). W ’

In this appendix, we first compute the radial and azi- t=2f(r) ot
muthal components of the velocity field in one Lundgren o(r,t)~— [a0nidre ¢ Inf(r) (A7)

strained spiral vortex sheet. The vorticity is given @1)

and the axisymmetric straining flow field b§2.89 and is an asymptotict(—o) solution of

(2.8b) [i(r,z)=(a/2)r?z andl =2 as in the Burgers vortéx 5 5

In order to calculate the components andu, of the fluid Hr)e MR oW, 19V, n A8)
velocity at each point of the flow, we first calculate the (re o2 'y o 2 Un)
stream functionV (r, ¢,t) that corresponds to the unstrained

2D incompressible vortex she@il); W (r,,t) is related to ~ Which is the Fourier-transformed version @f3).

the vorticity by Forn=0, (A8) and(A2b) imply (setting the additive con-
stant to Q
P . 10V . 1 0%V A3) v
w=—|—Z+-——+=—=]. dJ
e oarr%a¢? Woz—rﬂ(r). (A9)

The radial and azimuthal components of the velocity field
around the Lundgren strained vortex sheet are given by It follows that ast— oo,

t72f(r)

ar 1 ¢ ~ _ ainl¢—Q(nt]
U= +7 55 YESONETD),  (Add) e ‘I’O“HEO n2[dQ(r)/dr? © '
(A10)
J . . .
- / At this stage, one needs to sum a Fourier series of the type
_ _ e™ 5 cosix
where the effects of the strain have been taken into account E 2 =22 nZ
and whereS(t)=exp[[ ba(7)d7] s the stretch ratio and n#0 n=1
T(t)=/§S(7)dr the strained timg¢see Lundgreri2,3]; the and standard Fourier methods lead to
strain rate may be a function of time, i.eas=a(7)].
Following Lundgren[2], we expand the vorticity and ' cosnx @2 1 x \12
stream function in Fourier series ih. The vorticity (A1) 21 nZ =€+Z X— 2 int >
may be written "=
= 2 'nt( X }
. — = [X=27int| =—| |,
o(r,¢,H)=f(r) X ente=em, (A5) 2 2
n=—ox
where inti/27) is the integer value af/27. Consequently,
and the stream function (A10) may be summed up to give
- . t2f(r) 772+ 1 0 oo d—Q(nt) 2 o oo d—Q(n)t
(r,,t)y=¥qy(r) W 373 o) (rt T Int oo | ¢ (rt a Int o [
(Al
|
[By careful injection of(All) into (A3) one can recover Ugs~S(HrQSHN+o(T(t) "1S(t))  (Al2b)

(A1).]
From (A4a) and (Al11),
ast—oo. Note that there are contributionsupfrom both the
ar T(t) " 2F(J/S(D)r) &0 strain-rate field and the spiral vortex sheet. Note also the
U~=—5+ F{(dQ/dr)[VS(Dr )2 ¢~ Q(SONT(Y) jump in u, across the sheet of vorticity ate
=Q(/S()r)T(t). A similar jump can be found in the
O(T(t) 1S(t)) term ofu, associated with the spiral vortex
(Al2a) sheet. The contribution of the induced velocity from the vor-
tex sheet tas, andu,, tends to 0 ag—, and the azimuthal
and from(A4b), (A11), and(A9) one obtains velocity is dominated by the differential rotation

-2

. ¢—9(¢5<t)r)T(t>) }
T Int — |,
2w
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Q(y/S(t)r) which rotates the entire sheet structure. Finally, Dkproj=1+ Dy (Alda)
note that the leading order i®12) is axisymmetric, so that )
the flow tends towards axisymmetry &s . if the spiral has only a few turns, and

Lundgren[2] shows how thes function in (A1) may be
modified to account for nonvanishing viscosity and for
w(r,¢,t) to be an asymptotic solution of the Navier-Stokesif the spiral has a large number of turns, where
equations under the same conditi@®). Here we only deal
with an inviscid Lundgren asymptotic solution which has a ,
singularity in vorticity down to vanishing scales. This singu- DK:m'
larity is “complex” because of thespiral accumulating
structure of the jumps in velocity which extends all the way The Kolmogorov capacity of the spiral vortex sheet is 1
to the spiral's center. In fact, the Lundgren singularity is+Dgproj because the number of boxes of siZeeeded to
twofold: the spiral accumulation of the vortex shdeee cover the sheet is equal to the number of boxes of that size
(A1)], and the simple singularity if2(r), since Q(r) is  needed to cover the spiral intersection of the sheet with the
monotonically increasing as—0 [see (A2b)]. Such com-  plane normal to the direction (« 8~ Pkeri) times the number
plex singularities are not included in the family of simple of boxes needed to cover the sheet alongzteis (=5 %)
singularities that generate streamlines vidt=1 as we dis-  (see the box-counting algorithm in Sec. Ill, and Vassilicos
cussed in Sec. B A. Streamlines can exist vidig>1 in the  and Hunt[4]).

Lundgren spiral vortex sheet. The strain rate is identical to Note thatDy; is directly related to the powes that
the one in the Burgers vortex, and again severely limits theletermines the radial fall off of thep-averaged vorticity
region of space whem®,>1. In that restricted region, how- f(r)~r~“. If the radial decrease dd(r) is faster than any
ever, theDy of streamlines is a direct reflection and a simplepower lawr ~“, thenD ;= 2 and the Kolmogorov capacity
function of the Kolmogorov capacity of the Lundgren spiral of the spiral vortex sheet is 3. The measure of the Kolmog-

Dkproj=max(1,2Dy) (Al4b)

(Al40)

vortex sheet and of the related singularity(rr). orov capacity of a streamline around a strained spiral vortex
The equatiorr =r(¢) of a streamline’s projection on the sheet is therefore a measure of the vorticity variation radially
(r,®) plane may be obtained by integrating within the vortex as well as of the Kolmogorov capacity of
the spiral vortex sheet itself.
d¢ uy 47S(t) Q(L/S(t)r) The Kolmogorov capacity of a 3D streamlineDg =1 if,
dar ru, =~ a r ' (A13) after one turn of the spiral, the radial displacemanmt, is

smaller than the axial displacemehy,, . This is indeed the
to leading order in time. Consequently, the vortex sheet andase with the Lundgren vortex because of the persistent
the projected streamline have the same spiral geometry. Thatrain, unless the box-counting algorithm is limited to a re-
geometry is a direct reflection of the differential rotation of gion whereAz,<Ar,, in which caseDy =Dy When
the vortex sheet, and therefore, by virtue(éRa), of how  Q(r)~r~2, Ar =ro(llaa—2m)Y*—r, and
the ¢-averaged vorticityf (r) is radially distributed in space. Az;=z,(1/aa—27) Y*—z,, and the region whereDy
If Q(r)~r ", the projection of the streamline takes the spi-=Dy,; is bounded by
ral form r(¢)~¢ Y% which is the same spiral form 2w
adopted by the vortex sheéthe Kolmogorov capacity of 7.<F (Yaa—2m)~ -1
this spiral streamline projection {¥assilicos and Hunf4]) 070 (1jae—27) Ye—1-

(A15)
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